×

Back-reaction in massless de Sitter QFTs: holography, gravitational DBI action and \(f(R)\) gravity. (English) Zbl 1492.83113


MSC:

83E15 Kaluza-Klein and other higher-dimensional theories
81T20 Quantum field theory on curved space or space-time backgrounds
83E30 String and superstring theories in gravitational theory
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
83C15 Exact solutions to problems in general relativity and gravitational theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T12 Effective quantum field theories
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
80A10 Classical and relativistic thermodynamics

References:

[1] I. Antoniadis, J. Iliopoulos and T.N. Tomaras, 1986 Quantum Instability of de Sitter Space, https://doi.org/10.1103/PhysRevLett.56.1319 Phys. Rev. Lett.56 1319 · doi:10.1103/PhysRevLett.56.1319
[2] E.G. Floratos, J. Iliopoulos and T.N. Tomaras, 1987 Tree Level Scattering Amplitudes in de Sitter Space Diverge, https://doi.org/10.1016/0370-2693(87)90403-5 Phys. Lett. B197 373 · doi:10.1016/0370-2693(87)90403-5
[3] I. Antoniadis and E. Mottola, 1991 Graviton Fluctuations in de Sitter Space, https://doi.org/10.1063/1.529381 J. Math. Phys.32 1037 · Zbl 0729.53507 · doi:10.1063/1.529381
[4] M. Sasaki, H. Suzuki, K. Yamamoto and J. Yokoyama, 1993 Superexpansionary divergence: Breakdown of perturbative quantum field theory in space-time with accelerated expansion, https://doi.org/10.1088/0264-9381/10/5/003 Class. Quant. Grav.10 L55 · doi:10.1088/0264-9381/10/5/003
[5] H. Suzuki, M. Sasaki, K. Yamamoto and J. Yokoyama, 1994 Probability distribution functional for equal time correlation functions in curved space, https://doi.org/10.1142/S0217751X9400011X Int. J. Mod. Phys. A9 221 · doi:10.1142/S0217751X9400011X
[6] N.C. Tsamis and R.P. Woodard, 1994 The Physical basis for infrared divergences in inflationary quantum gravity, https://doi.org/10.1088/0264-9381/11/12/012 Class. Quant. Grav.11 2969 · doi:10.1088/0264-9381/11/12/012
[7] A.A. Starobinsky, 1986 Stochastic de Sitter (inflationary) stage in the early universe, https://doi.org/10.1007/3-540-16452-9\6 Lect. Notes Phys.246 107 · doi:10.1007/3-540-16452-9\6
[8] A.A. Starobinsky and J. Yokoyama, 1994 Equilibrium state of a selfinteracting scalar field in the de Sitter background, https://doi.org/10.1103/PhysRevD.50.6357 Phys. Rev. D50 6357 [astro-ph/9407016] · doi:10.1103/PhysRevD.50.6357
[9] N.C. Tsamis and R.P. Woodard, 2005 Stochastic quantum gravitational inflation, https://doi.org/10.1016/j.nuclphysb.2005.06.031 Nucl. Phys. B724 295 [gr-qc/0505115] · Zbl 1178.83026 · doi:10.1016/j.nuclphysb.2005.06.031
[10] V. Gorbenko and L. Senatore, λ φ^4 in dS, [1911.00022]
[11] D. Marolf and I.A. Morrison, 2011 The IR stability of de Sitter QFT: results at all orders, https://doi.org/10.1103/PhysRevD.84.044040 Phys. Rev. D84 044040 [1010.5327] · doi:10.1103/PhysRevD.84.044040
[12] S. Hollands, 2013 Correlators, Feynman diagrams and quantum no-hair in deSitter spacetime, https://doi.org/10.1007/s00220-012-1653-2 Commun. Math. Phys.319 1 [1010.5367] · Zbl 1278.81136 · doi:10.1007/s00220-012-1653-2
[13] V.F. Mukhanov, L.W. Abramo and R.H. Brandenberger, 1997 On the Back reaction problem for gravitational perturbations, https://doi.org/10.1103/PhysRevLett.78.1624 Phys. Rev. Lett.78 1624 [gr-qc/9609026] · doi:10.1103/PhysRevLett.78.1624
[14] L.W. Abramo, R.H. Brandenberger and V.F. Mukhanov, 1997 The energy-momentum tensor for cosmological perturbations, https://doi.org/10.1103/PhysRevD.56.3248 Phys. Rev. D56 3248 [gr-qc/9704037] · doi:10.1103/PhysRevD.56.3248
[15] L.R.W. Abramo and R.P. Woodard, 1999 One loop back reaction on chaotic inflation, https://doi.org/10.1103/PhysRevD.60.044010 Phys. Rev. D60 044010 [astro-ph/9811430] · doi:10.1103/PhysRevD.60.044010
[16] B. Losic and W.G. Unruh, 2005 Long-wavelength metric backreactions in slow-roll inflation, https://doi.org/10.1103/PhysRevD.72.123510 Phys. Rev. D72 123510 [gr-qc/0510078] · doi:10.1103/PhysRevD.72.123510
[17] B. Losic and W.G. Unruh, 2008 Cosmological Perturbation Theory in Slow-Roll Spacetimes, https://doi.org/10.1103/PhysRevLett.101.111101 Phys. Rev. Lett.101 111101 [0804.4296] · Zbl 1228.83138 · doi:10.1103/PhysRevLett.101.111101
[18] E. Mottola, 1985 Particle Creation in de Sitter Space, https://doi.org/10.1103/PhysRevD.31.754 Phys. Rev. D31 754 · doi:10.1103/PhysRevD.31.754
[19] E. Mottola, 1986 Thermodynamic instability of de Sitter space, https://doi.org/10.1103/PhysRevD.33.1616 Phys. Rev. D33 1616 · doi:10.1103/PhysRevD.33.1616
[20] N.C. Tsamis and R.P. Woodard, 1996 Quantum gravity slows inflation, https://doi.org/10.1016/0550-3213(96)00246-5 Nucl. Phys. B474 235 [hep-ph/9602315] · Zbl 0925.83021 · doi:10.1016/0550-3213(96)00246-5
[21] N.C. Tsamis and R.P. Woodard, 1997 The Quantum gravitational back reaction on inflation, https://doi.org/10.1006/aphy.1997.5613 Annals Phys.253 1 [hep-ph/9602316] · Zbl 0910.53071 · doi:10.1006/aphy.1997.5613
[22] V.K. Onemli and R.P. Woodard, 2004 Quantum effects can render w < -1 on cosmological scales, https://doi.org/10.1103/PhysRevD.70.107301 Phys. Rev. D70 107301 [gr-qc/0406098] · doi:10.1103/PhysRevD.70.107301
[23] A.M. Polyakov, Infrared instability of the de Sitter space, [1209.4135]
[24] S.P. Miao, N.C. Tsamis and R.P. Woodard, 2017 Invariant measure of the one-loop quantum gravitational backreaction on inflation, https://doi.org/10.1103/PhysRevD.95.125008 Phys. Rev. D95 125008 [1702.05694] · doi:10.1103/PhysRevD.95.125008
[25] P. Mazur and E. Mottola, 1986 Spontaneous Breaking of de Sitter Symmetry by Radiative Effects, https://doi.org/10.1016/0550-3213(86)90058-1 Nucl. Phys. B278 694 · doi:10.1016/0550-3213(86)90058-1
[26] B. Allen, 1985 Vacuum States in de Sitter Space, https://doi.org/10.1103/PhysRevD.32.3136 Phys. Rev. D32 3136 · doi:10.1103/PhysRevD.32.3136
[27] B. Allen and A. Folacci, 1987 The Massless Minimally Coupled Scalar Field in de Sitter Space, https://doi.org/10.1103/PhysRevD.35.3771 Phys. Rev. D35 3771 · doi:10.1103/PhysRevD.35.3771
[28] S. Hollands, 2012 Massless interacting quantum fields in deSitter spacetime, https://doi.org/10.1007/s00023-011-0140-1 Annales Henri Poincaré13 1039 [1105.1996] · Zbl 1332.81156 · doi:10.1007/s00023-011-0140-1
[29] S. Weinberg, 2005 Quantum contributions to cosmological correlations, https://doi.org/10.1103/PhysRevD.72.043514 Phys. Rev. D72 043514 [hep-th/0506236] · doi:10.1103/PhysRevD.72.043514
[30] S. Weinberg, 2006 Quantum contributions to cosmological correlations. II. Can these corrections become large?, https://doi.org/10.1103/PhysRevD.74.023508 Phys. Rev. D74 023508 [hep-th/0605244] · doi:10.1103/PhysRevD.74.023508
[31] K. Chaicherdsakul, 2007 Quantum Cosmological Correlations in an Inflating Universe: Can fermion and gauge fields loops give a scale free spectrum?, https://doi.org/10.1103/PhysRevD.75.063522 Phys. Rev. D75 063522 [hep-th/0611352] · doi:10.1103/PhysRevD.75.063522
[32] A. Riotto and M.S. Sloth, 2008 On Resumming Inflationary Perturbations beyond One-loop J. Cosmol. Astropart. Phys.2008 04 030 [0801.1845]
[33] L. Senatore and M. Zaldarriaga, 2010 On Loops in Inflation J. High Energy Phys. JHEP12(2010)008 [0912.2734] · Zbl 1294.83099 · doi:10.1007/JHEP12(2010)008
[34] L. Senatore and M. Zaldarriaga, 2013 On Loops in Inflation II: IR Effects in Single Clock Inflation J. High Energy Phys. JHEP01(2013)109 [1203.6354] · doi:10.1007/JHEP01(2013)109
[35] L. Senatore and M. Zaldarriaga, 2013 The constancy of ζ in single-clock Inflation at all loops J. High Energy Phys. JHEP09(2013)148 [1210.6048] · doi:10.1007/JHEP09(2013)148
[36] G.L. Pimentel, L. Senatore and M. Zaldarriaga, 2012 On Loops in Inflation III: Time Independence of zeta in Single Clock Inflation J. High Energy Phys. JHEP07(2012)166 [1203.6651] · doi:10.1007/JHEP07(2012)166
[37] D. Seery, 2010 Infrared effects in inflationary correlation functions, https://doi.org/10.1088/0264-9381/27/12/124005 Class. Quant. Grav.27 124005 [1005.1649] · Zbl 1190.83128 · doi:10.1088/0264-9381/27/12/124005
[38] U.H. Danielsson and T. Van Riet, 2018 What if string theory has no de Sitter vacua?, https://doi.org/10.1142/S0218271818300070 Int. J. Mod. Phys. D27 1830007 [1804.01120] · Zbl 1433.83002 · doi:10.1142/S0218271818300070
[39] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, [1806.08362]
[40] J.K. Ghosh, E. Kiritsis, F. Nitti and L.T. Witkowski, 2018 Holographic RG flows on curved manifolds and quantum phase transitions J. High Energy Phys. JHEP05(2018)034 [1711.08462] · Zbl 1391.83047 · doi:10.1007/JHEP05(2018)034
[41] J.K. Ghosh, E. Kiritsis, F. Nitti and L.T. Witkowski, 2019 Holographic RG flows on curved manifolds and the F-theorem J. High Energy Phys. JHEP02(2019)055 [1810.12318] · Zbl 1411.83030 · doi:10.1007/JHEP02(2019)055
[42] E. Kiritsis, 2019 String theory in a nutshell, second edition, Princeton University Press [https://press.princeton.edu/titles/13376.html · Zbl 1411.81006
[43] T.P. Sotiriou and V. Faraoni, 2010 f(R) Theories Of Gravity, https://doi.org/10.1103/RevModPhys.82.451 Rev. Mod. Phys.82 451 [0805.1726] · Zbl 1205.83006 · doi:10.1103/RevModPhys.82.451
[44] A. De Felice and S. Tsujikawa, 2010 f(R) theories, https://doi.org/10.12942/lrr-2010-3 Living Rev. Rel.13 3 [1002.4928] · Zbl 1215.83005 · doi:10.12942/lrr-2010-3
[45] S. Nojiri and S.D. Odintsov, 2011 Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, https://doi.org/10.1016/j.physrep.2011.04.001 Phys. Rept.505 59 [1011.0544] · doi:10.1016/j.physrep.2011.04.001
[46] S. Nojiri, S.D. Odintsov and V.K. Oikonomou, 2017 Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution, https://doi.org/10.1016/j.physrep.2017.06.001 Phys. Rept.692 1 [1705.11098] · Zbl 1370.83084 · doi:10.1016/j.physrep.2017.06.001
[47] A.A. Starobinsky, 1987 A New Type of Isotropic Cosmological Models Without Singularity, https://doi.org/10.1016/0370-2693(80)90670-X Adv. Ser. Astrophys. Cosmol.3 130 · Zbl 1371.83222 · doi:10.1016/0370-2693(80)90670-X
[48] E. Kiritsis, 2005 Holography and brane-bulk energy exchange J. Cosmol. Astropart. Phys.2005 10 014 [hep-th/0504219] · Zbl 1236.83014
[49] G. Moreau and J. Serreau, 2019 Stability of de Sitter spacetime against infrared quantum scalar field fluctuations, https://doi.org/10.1103/PhysRevLett.122.011302 Phys. Rev. Lett.122 011302 [1808.00338] · doi:10.1103/PhysRevLett.122.011302
[50] G. Moreau and J. Serreau, 2019 Backreaction of superhorizon scalar field fluctuations on a de Sitter geometry: A renormalization group perspective, https://doi.org/10.1103/PhysRevD.99.025011 Phys. Rev. D99 025011 [1809.03969] · doi:10.1103/PhysRevD.99.025011
[51] P.M. Chesler and A. Loeb, Holographic duality and mode stability of de Sitter space in semiclassical gravity, [2003.05501] · Zbl 1486.83038
[52] M.J. Duff, 1994 Twenty years of the Weyl anomaly, https://doi.org/10.1088/0264-9381/11/6/004 Class. Quant. Grav.11 1387 [hep-th/9308075] · Zbl 0808.53063 · doi:10.1088/0264-9381/11/6/004
[53] A. Vilenkin, 1985 Classical and Quantum Cosmology of the Starobinsky Inflationary Model, https://doi.org/10.1103/PhysRevD.32.2511 Phys. Rev. D32 2511 · doi:10.1103/PhysRevD.32.2511
[54] I. Papadimitriou, 2011 Holographic Renormalization of general dilaton-axion gravity J. High Energy Phys. JHEP08(2011)119 [1106.4826] · Zbl 1298.81194 · doi:10.1007/JHEP08(2011)119
[55] K. Skenderis and P.K. Townsend, 2006 Hidden supersymmetry of domain walls and cosmologies, https://doi.org/10.1103/PhysRevLett.96.191301 Phys. Rev. Lett.96 191301 [hep-th/0602260] · doi:10.1103/PhysRevLett.96.191301
[56] K. Skenderis and P.K. Townsend, 2006 Hamilton-Jacobi method for curved domain walls and cosmologies, https://doi.org/10.1103/PhysRevD.74.125008 Phys. Rev. D74 125008 [hep-th/0609056] · doi:10.1103/PhysRevD.74.125008
[57] A. Karch and L. Randall, 2001 Locally localized gravity J. High Energy Phys. JHEP05(2001)008 [hep-th/0011156]
[58] E. Kiritsis, F. Nitti and L. Silva Pimenta, 2017 Exotic RG Flows from Holography, https://doi.org/10.1002/prop.201600120 Fortsch. Phys.65 1600120 [1611.05493] · Zbl 1371.83171 · doi:10.1002/prop.201600120
[59] E. Kiritsis, W. Li and F. Nitti, 2014 Holographic RG flow and the Quantum Effective Action, https://doi.org/10.1002/prop.201400007 Fortsch. Phys.62 389 [1401.0888] · Zbl 1338.81275 · doi:10.1002/prop.201400007
[60] S.W. Hawking, T. Hertog and H.S. Reall, 2001 Trace anomaly driven inflation, https://doi.org/10.1103/PhysRevD.63.083504 Phys. Rev. D63 083504 [hep-th/0010232] · doi:10.1103/PhysRevD.63.083504
[61] J.C. Fabris, A.M. Pelinson and I.L. Shapiro, Anomaly induced effective action and inflation, [hep-th/0011030] · Zbl 0965.83039
[62] I.L. Shapiro, 2004 An Overview of the anomaly induced inflation, https://doi.org/10.1016/S0920-5632(03)02431-9 Nucl. Phys. B Proc. Suppl.127 196 [hep-ph/0311307] · doi:10.1016/S0920-5632(03)02431-9
[63] I. Antoniadis, P.O. Mazur and E. Mottola, 2007 Cosmological dark energy: Prospects for a dynamical theory, https://doi.org/10.1088/1367-2630/9/1/011 New J. Phys.9 11 [gr-qc/0612068] · doi:10.1088/1367-2630/9/1/011
[64] J.F. Koksma and T. Prokopec, 2008 The Effect of the Trace Anomaly on the Cosmological Constant, https://doi.org/10.1103/PhysRevD.78.023508 Phys. Rev. D78 023508 [0803.4000] · doi:10.1103/PhysRevD.78.023508
[65] T.d.P. Netto, A.M. Pelinson, I.L. Shapiro and A.A. Starobinsky, 2016 From stable to unstable anomaly-induced inflation, https://doi.org/10.1140/epjc/s10052-016-4390-4 Eur. Phys. J. C76 544 [1509.08882] · doi:10.1140/epjc/s10052-016-4390-4
[66] N.D. Birrell and P.C.W. Davies, 1984 Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. [https://doi.org/10.1017/CBO9780511622632DOI] · Zbl 0972.81605
[67] I. Ben-Dayan, S. Jing, M. Torabian, A. Westphal and L. Zarate, 2014 R^2&log; R quantum corrections and the inflationary observables J. Cosmol. Astropart. Phys.2014 09 005 [1404.7349]
[68] O. Ben-Ami, D. Carmi and M. Smolkin, 2015 Renormalization group flow of entanglement entropy on spheres J. High Energy Phys. JHEP08(2015)048 [1504.00913] · Zbl 1388.81028 · doi:10.1007/JHEP08(2015)048
[69] M. Taylor and W. Woodhead, The holographic F theorem, [1604.06809]
[70] S.A. Woolliams, 2013 Higher Derivative Theories of Gravity, Master’s thesis, Imperial College London [https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/theoretical-physics/msc/dissertations/2013/LIINCOMPACT3D2014.pdf]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.