×

Exotic RG flows from holography. (English) Zbl 1371.83171

Summary: Holographic RG flows are studied in an Einstein-dilaton theory with a general potential. The superpotential formalism is utilized in order to characterize and classify all solutions that are associated with asymptotically AdS space-times. Such solutions correspond to holographic RG flows and are characterized by their holographic {\(\beta\)}-functions. Novel solutions are found that have exotic properties from a RG point-of view. Some have {\(\beta\)}-functions that are defined patch-wise and lead to flows where the {\(\beta\)}-function changes sign without the flow stopping. Others describe flows that end in non-neighboring extrema in field space. Finally others describe regular flows between two minima of the potential and correspond holographically to flows driven by the VEV of an irrelevant operator in the UV CFT.

MSC:

83E15 Kaluza-Klein and other higher-dimensional theories
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
81T17 Renormalization group methods applied to problems in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
33B15 Gamma, beta and polygamma functions

References:

[1] K. G.Wilson, Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture, Phys. Rev. B4, 3174 (1971);; Renormalization group and critical phenomena. 2. Phase space cell analysis of critical behavior, Phys. Rev. B4, 3184 (1971). · Zbl 1236.82017
[2] C.Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B301, 90 (1993);; J.Berges, N.Tetradis and C.Wetterich, Non‐perturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept.363, 223 (2002) [ArXiv:hep‐ph/0005122]. · Zbl 0994.81077
[3] T. R.Morris, The Exact renormalization group and approximate solutions, Int. J. Mod. Phys. A9, 2411 (1994) [ArXiv:hep‐ph/9308265]. · Zbl 0985.81604
[4] J.Polchinski, Renormalization and Effective Lagrangians, Nucl. Phys. B231, 269 (1984).
[5] J. M.Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38, 1113 (1999),; Adv. Theor. Math. Phys.2, 23 (1998) [ArXiv:hep‐th/9711200]. · Zbl 0969.81047
[6] S. S.Gubser, I. R.Klebanov, and A. M.Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B428, 105 (1998) [ArXiv:hep‐th/9802109]. · Zbl 1355.81126
[7] E.Witten, Anti‐de Sitter space and holography, Adv. Theor. Math. Phys.2, 253 (1998) [ArXiv:hep‐th/9802150]. · Zbl 0914.53048
[8] L.Girardello, M.Petrini, M.Porrati, and A.Zaffaroni, Novel local CFT and exact results on perturbations of N=4 superYang Mills from AdS dynamics, JHEP9812, 022 (1998) [ArXiv:hep‐th/9810126]. · Zbl 0949.81053
[9] D. Z.Freedman, S. S.Gubser, K.Pilch, and N. P.Warner, Renormalization group flows from holography supersymmetry and a c‐theorem, Adv. Theor. Math. Phys.3, 363 (1999) [ArXiv:hep‐th/9904017]. · Zbl 0976.83067
[10] A.Ceresole and G.Dall’Agata, Flow Equations for Non‐BPS Extremal Black Holes, JHEP0703, 110 (2007) [ArXiv:hep‐th/702088].
[11] R. C.Myers and A.Sinha, Seeing a c‐theorem with holography, Phys. Rev. D82, 046006 (2010) [ArXiv:1006.1263][hep‐th].
[12] E. T.Akhmedov, A Remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B442, 152 (1998) [ArXiv:hep‐th/9806217]. · Zbl 1002.81538
[13] J.deBoer, E. P.Verlinde and H. L.Verlinde, On the holographic renormalization group, JHEP0008, 003 (2000) [ArXiv:hep‐th/9912012]. · Zbl 0989.81538
[14] J.Bourdier and E.Kiritsis, Holographic RG flows and nearly‐marginal operators, Class. Quant. Grav.31, 035011 (2014) [ArXiv:1310.0858][hep‐th]. · Zbl 1470.83028
[15] E.Kiritsis and V.Niarchos, The holographic quantum effective potential at finite temperature and density, JHEP1208, 164 (2012) [ArXiv:1205.6205][hep‐th].
[16] E.Kiritsis, W.Li and F.Nitti, Holographic RG flow and the Quantum Effective Action, Fortsch. Phys.62, 389 (2014) [ArXiv:1401.0888][hep‐th]. · Zbl 1338.81275
[17] I.Papadimitriou and K.Skenderis, AdS/CFT correspondence and geometry, IRMA Lect. Math. Theor. Phys.8, 7-3 (2005) [ArXiv:hep‐th/0404176].
[18] I.Papadimitriou, Multi‐Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP0705, 075 (2007) [ArXiv:hep‐th/0703152].
[19] I.Papadimitriou, Holographic Renormalization of general dilaton‐axion gravity, JHEP1108, 119 (2011) [ArXiv:1106.4826][hep‐th]. · Zbl 1298.81194
[20] U.Gürsoy and E.Kiritsis, Exploring improved holographic theories for QCD: Part I, JHEP0802, 032 (2008) [ArXiv:0707.1324][hep‐th];; U.Gürsoy, E.Kiritsis, and F.Nitti, Exploring improved holographic theories for QCD: Part II, JHEP0802, 019 (2008) [ArXiv:0707.1349][hep‐th].
[21] I.Heemskerk and J.Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP1106, 031 (2011) [ArXiv:1010.1264][hep‐th]. · Zbl 1298.81181
[22] T.Faulkner, H.Liu, and M.Rangamani, Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm, JHEP1108, 051 (2011) [ArXiv:1010.4036][hep‐th]. · Zbl 1298.81173
[23] E.Kiritsis, W.Li, and F.Nitti, On the gluonic operator effective potential in holographic Yang‐Mills theory, JHEP1504, 125 (2015) [ArXiv:1410.1091][hep‐th]. · Zbl 1388.83280
[24] J.Lindgren, I.Papadimitriou, A.Taliotis, and J.Vanhoof, Holographic Hall conductivities from dyonic backgrounds, JHEP1507, 094 (2015) [ArXiv:1505.04131][hep‐th]. · Zbl 1388.83294
[25] J. M.Cornwall, R.Jackiw, and E.Tomboulis, Effective Action for Composite Operators, Phys. Rev. D10, 2428 (1974). · Zbl 1110.81324
[26] E.Kiritsis, Lorentz violation, Gravity, Dissipation and Holography, JHEP1301, 030 (2013) [ArXiv:1207.2325][hep‐th].
[27] S. S.Lee, Holographic description of quantum field theory, Nucl. Phys. B832, 567 (2010) [ArXiv:0912.5223][hep‐th];; Holographic description of large N gauge theory, Nucl. Phys. B851, 143 (2011) [ArXiv:1011.1474][hep‐th]. · Zbl 1204.81130
[28] S. S.Lee, Quantum Renormalization Group and Holography, JHEP1401, 076 (2014) [ArXiv:1305.3908][hep‐th];; P.Lunts, S.Bhattacharjee, J.Miller, E.Schnetter, Y. B.Kim, and S. S.Lee, Ab initio holography, JHEP1508, 107 (2015) [ArXiv:1503.06474][hep‐th].
[29] A.Giveon, M. B.Halpern, E. B.Kiritsis, and N. A.Obers, Exact C‐function and C‐theorem on affine‐Virasoro space, Nucl. Phys. B357, 655 (1991).
[30] M.Halpern, 1995, (unpublished).
[31] M. B.Halpern, E.Kiritsis, N. A.Obers, and K.Clubok, Irrational conformal field theory, Phys. Rept.265, 1 (1996) [ArXiv:hep‐th/9501144]. · Zbl 0947.81554
[32] J. L.Cardy, Is There a c‐theorem in four dimensions?, Phys. Lett. B215, 749 (1988).
[33] Z.Komargodski and A.Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP1112, 099 (2011) [ArXiv:1107.3987][hep‐th]. · Zbl 1306.81140
[34] H.Osborn, Derivation of a Four‐dimensional c Theorem for renormaliseable quantum field theories, Phys. Lett. B222, 97 (1989);; Weyl consistency conditions and a local renormalization group equation for general renormalisable field theories, Nucl. Phys. B363, 486 (1991).
[35] I.Jack and H.Osborn, Analogs of the c‐theorem for four‐dimensional renormalisable field theories, Nucl. Phys. B343, 647 (1990);; I.Jack and H.Osborn, Constraints on RG Flow for Four Dimensional Quantum Field Theories, Nucl. Phys. B883, 425 (2014) [ArXiv:1312.0428][hep‐th].
[36] S.El‐Showk, Y.Nakayama, and S.Rychkov, What Maxwell Theory in d≠ 4 teaches us about scale and conformal invariance, Nucl. Phys. B848, 578 (2011) [ArXiv:1101.5385][hep‐th]. · Zbl 1215.78006
[37] M. A.Luty, J.Polchinski, and R.Rattazzi, The a‐theorem and the Asymptotics of 4D Quantum Field Theory, JHEP1301, 152 (2013) [ArXiv:1204.5221][hep‐th]. ! · Zbl 1342.81347
[38] A.Dymarsky, Z.Komargodski, A.Schwimmer, and S.Theisen, On Scale and Conformal Invariance in Four Dimensions, JHEP1510, 171 (2015) [ArXiv:1309.2921][hep‐th];; A.Dymarsky, K.Farnsworth, Z.Komargodski, M. A.Luty, and V.Prilepina, Scale Invariance, Conformality, and Generalized Free Fields, JHEP1602, 099 (2016) [ArXiv:1402.6322][hep‐th].
[39] Y.Nakayama, Scale invariance vs conformal invariance, Phys. Rept.569, 1 (2015) [ArXiv:1402.6322][hep‐th].
[40] S. D.Glazek and K. G.Wilson, Renormalization of overlapping transverse divergences in a model light‐front Hamiltonian, Phys. Rev. D47, 4657 (1993)
[41] P. F.Bedaque, H. W.Hammer, and U.vanKolck, Effective theory of the triton, Nucl. Phys. A676, 357 (2000) [ArXiv:nucl‐th/9906032].
[42] A.LeClair, J. M.Roman, and G.Sierra, Log periodic behavior of finite size effects in field theories with RG limit cycles, Nucl. Phys. B700, 407 (2004) [ArXiv:hep‐th/0312141]. · Zbl 1123.81386
[43] J. F.Fortin, B.Grinstein, and A.Stergiou, RGCycles, Scale vs Conformal Invariance, and All That?, Strong Coupling Gauge Theories in the LHC Perspective (SCGT12): pp. 247‐261; Limit Cycles and Conformal Invariance, JHEP1301, 184 (2013) [ArXiv:1208.3674][hep‐th].
[44] T. L.Curtright, X.Jin, and C. K.Zachos, Renormalization Group flows, cycles, and c‐theorem folklore, Phys. Rev. Lett.108, 131601 (2012) [ArXiv:1111.2649][hep‐th].
[45] U.Gürsoy, E.Kiritsis, L.Mazzanti, and F.Nitti, Holography and Thermodynamics of 5D Dilaton‐gravity, JHEP0905, 033 (2009) [ArXiv:0812.0792][hep‐th].
[46] U.Gürsoy, E.Kiritsis, L.Mazzanti, G.Michalogiorgakis, and F.Nitti, Improved Holographic QCD, Lect. Notes Phys.828, 79 (2011) [ArXiv:1006.5461][hep‐th].
[47] C.Charmousis, B.Gouteraux, B. S.Kim, E.Kiritsis, and R.Meyer, Effective Holographic Theories for low‐temperature condensed matter systems, JHEP1011, 151 (2010) [ArXiv:1005.4690][hep‐th];; B.Gouteraux and E.Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP1112, 036 (2011) [ArXiv:1107.2116][hep‐th].
[48] S. S.Gubser, Curvature singularities: The Good, the bad, and the naked, Adv. Theor. Math. Phys.4, 679 (2000) [ArXiv:hep‐th/0002160]. · Zbl 0984.83036
[49] C.Csaki, M. L.Graesser, and G. D.Kribs, Radion dynamics and electroweak physics, Phys. Rev. D63, 065002 (2001) [ArXiv:hep‐th/0008151].
[50] L.Kofman, J.Martin, and M.Peloso, Exact identification of the radion and its coupling to the observable sector, Phys. Rev. D70, 085015 (2004) [ArXiv:hep‐ph/0401189].
[51] E.Kiritsis and F.Nitti, On massless 4D gravitons from asymptotically AdS(5) space‐times, Nucl. Phys. B772, 67 (2007) [ArXiv:hep‐th/0611344]. · Zbl 1117.83324
[52] PeterBreitenlohner and Daniel Z.Freedman, Stability in gauged extended supergravity, Annals Phys.144, 249 (1982). · Zbl 0606.53044
[53] N.Engelhardt, Into the Bulk: A Covariant Approach, [ArXiv:1610.08516][hep‐th].
[54] E.Shaghoulian and H.Wang, Timelike BKL singularities and chaos in AdS/CFT, Class. Quant. Grav.33(12), 125020 (2016) [ArXiv:1601.02599][hep‐th]. · Zbl 1342.83259
[55] I. R.Klebanov and M. J.Strassler, Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities, JHEP0008, 052 (2000) [ArXiv:hep‐th/0007191]. · Zbl 0986.83041
[56] M.Jarvinen and E.Kiritsis, Holographic Models for QCD in the Veneziano Limit, JHEP1203, 002 (2012) [ArXiv:1112.1261][hep‐ph].
[57] E.Witten, Supersymmetry and Morse theory, J. Diff. Geom.17(4), 661 (1982). · Zbl 0499.53056
[58] S.Gukov, RG Flows and Bifurcations, [ArXiv:1608.06638][hep‐th].
[59] E.Kiritsis, Asymptotic freedom, asymptotic flatness and cosmology, JCAP1311, 011 (2013) [ArXiv:1307.5873][hep‐th];; P.Binetruy, E.Kiritsis, J.Mabillard, M.Pieroni, and C.Rosset, Universality classes for models of inflation, JCAP1504(04), 033 (2015) [ArXiv:1407.0820][astro‐ph.CO].
[60] I. R.Klebanov and E.Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B556, 89 (1999) [ArXiv:hep‐th/9905104]. · Zbl 0958.81134
[61] EdwardWitten, Multi‐Trace Operators, Boundary Conditions, And AdS/CFT Correspondence, [ArXiv:hep‐th/0112258].
[62] K.Skenderis and P. K.Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B468, 46 (1999) [ArXiv:hep‐th/9909070]. · Zbl 0993.83033
[63] D. W.Jordan and P.SmithNonlinear Ordinary Differential Equations (Oxford University Press, 2007), pg. 511. · Zbl 1130.34001
[64] D.Martelli and A.Miemiec, CFT/CFT interpolating RG flows and the holographic c function, JHEP0204, 027 (2002) [ArXiv:hep‐th/0112150].
[65] S.Sibiryakov, Private correspondence.
[66] M.Libanov, V.Rubakov, and S.Sibiryakov, On holography for (pseudo‐)conformal cosmology, Phys. Lett. B741, 239 (2015) [ArXiv:1409.4363][hep‐th]. · Zbl 1373.83130
[67] Z.Kakushadze, Bulk supersymmetry and brane cosmological constant, Phys. Lett. B489, 207 (2000) [ArXiv:hep‐th/0006215]. · Zbl 0961.83046
[68] L.Huijse, S.Sachdev, and B.Swingle, Hidden Fermi surfaces in compressible states of gauge‐gravity duality, Phys. Rev. B85, 035121 (2012) [ArXiv:1112.0573][cond‐mat.str‐el].
[69] D.Buchholz and K.Fredenhagen, Dilations and Interaction, J. Math. Phys.18, 1107 (1977).
[70] L. D.Landau and E. M.Lifshitz, Quantum Mechanics Course of theoretical physics: v.3 (Pergamon Press, Oxford, 1977), pp. 114?117;; S.Weinberg, Minimal fields of canonical dimensionality are free, Phys. Rev. D86, 105015 (2012) [ArXiv:hep‐th/1210.3864].
[71] L.McAllister, E.Silverstein, A.Westphal, and T.Wrase, The Powers of Monodromy, JHEP1409, 123 (2014) [ArXiv:1405.3652][hep‐th].
[72] U.Gürsoy, A.Jansen, and W.van derSchee, New dynamical instability in asymptotically anti‐de Sitter spacetime, Phys. Rev. D94(6), 061901 (2016) [ArXiv:1603.07724][hep‐th].
[73] L.Alvarez‐Gaume, J.Distler, C.Kounnas, and M.Marino, Softly broken N=2 QCD, Int. J. Mod. Phys. A11, 4745 (1996) [ArXiv:hep‐th/9604004]. · Zbl 0985.81755
[74] N.Seiberg, Electric ‐ magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B435, 129 (1995) [ArXiv:hep‐th/9411149];; K. A.Intriligator and N.Seiberg, Lectures on supersymmetric gauge theories and electric‐magnetic duality, Nucl. Phys. Proc. Suppl.45BC, 1 (1996) [Subnucl. Ser. 34, 237 (1997)] [ArXiv:hep‐th/9509066]. · Zbl 1020.81912
[75] A.Butti, M.Grana, R.Minasian, M.Petrini, and A.Zaffaroni, The Baryonic branch of Klebanov‐Strassler solution: A supersymmetric family of SU(3) structure backgrounds, JHEP0503, 069 (2005) [ArXiv:hep‐th/0412187].
[76] S.Franco, Y. H.He, C.Herzog, and J.Walcher, Chaotic duality in string theory, Phys. Rev. D70, 046006 (2004) [ArXiv:hep‐th/0402120].
[77] E.Kiritsis and V.Niarchos, Interacting String Multi‐verses and Holographic Instabilities of Massive Gravity, Nucl. Phys. B812, 488 (2009) [ArXiv:0808.3410][hep‐th]. · Zbl 1194.83116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.