×

Geometry of holomorphic mappings and Hölder continuity of the pluricomplex Green function. (English) Zbl 1470.32100

For each non empty compact set \(K\subset\mathbb C^N\) let \(V_K\) denote its Siciak extremal function, \(V_K(z):=\sup\{\varphi(z): \varphi\) is plurisubharmonic on \(\mathbb C^N\), \(\sup\{\varphi(w)-\log(1+|w|): w\in\mathbb C^N\}<+\infty\), and \(\varphi\leq0\) on \(K\}\), \(z\in\mathbb C^N\). We say that \(K\) has the HCP property if there exist \(\omega, \mu>0\) such that \(V_K(z)\leq\omega(\operatorname{dist}(z,K))^\mu\), for each \(z\in\mathbb C^N\) with \(\operatorname{dist}(z,K)\leq1\). We say that \(K\) satisfies Markov’s inequality if there exist \(\varepsilon, C>0\) such that for each polynomial \(Q\) of \(N\) variables we have \(\|\frac{\partial^{|\alpha|}Q}{\partial z_1^{\alpha_1}\cdots\partial z_N^{\alpha_N}}\|_K\leq C(\deg Q)^\varepsilon)^{|\alpha|} \|Q\|_K\), \(\alpha\in\mathbb N_0^N\). Let \(h:U\longrightarrow\mathbb C^{N'}\) be holomorphic, where \(U\) is open in \(\mathbb C^N\). Let \(U_\ast\) denote the union of those connected components \(S\) of \(U\) such that \(\operatorname{rank} d_\zeta h=N'\) for some \(\zeta\in S\). We say that \(h\) is nondenegerate if \(U_\ast=U\). The main results of the paper are the following theorems:
– Assume that \(K\) has the HCP property and \(\widehat K\subset U\). Then the following conditions are equivalent: (i) \(h(K)\) has the HCP property; (ii) \(V_{h(K)}\) is continuous; (iii) \(h(K)\subset (h(K\cap U_\ast))\widehat{\;}\).
– Assume that \(h\) is nondegenerate, \(K\) has the HCP property, and \(\widehat K\subset U\). Then \(h(K)\) has the HCP property.
– Assume that \(h\) is nondegenerate, \(K\) satisfies Markov’s inequality, \(\widehat K\subset U\), and \(h(K)\) is nonpluripolar. Then \(h(K)\) satisfies Markov’s inequality.

MSC:

32U35 Plurisubharmonic extremal functions, pluricomplex Green functions
32U15 General pluripotential theory

References:

[1] Baran, M., Białas-Cież, L.: Hölder continuity of the Green function and Markov brothers’ inequality. Constr. Approx. 40, 121-140 (2014) · Zbl 1322.32027
[2] Baran, M.; Białas-Cież, L.; Milówka, B., On the best exponent in Markov inequality, Potential Anal., 38, 635-651 (2013) · Zbl 1273.41008
[3] Baran, M.; Pleśniak, W., Markov’s exponent of compact sets in \({\mathbb{C}}^n\), Proc. Am. Math. Soc., 123, 2785-2791 (1995) · Zbl 0841.41011
[4] Bedford, E.; Taylor, BA, A new capacity for plurisubharmonic functions, Acta Math., 149, 1-40 (1982) · Zbl 0547.32012
[5] Bierstone, E.; Milman, P., Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67, 5-42 (1988) · Zbl 0674.32002
[6] Borwein, P.; Erdélyi, T., Polynomials and polynomial inequalities (1995), New York: Springer-Verlag, New York · Zbl 0840.26002
[7] Bos, LP; Brudnyi, A.; Levenberg, N., On polynomial inequalities on exponential curves in \({\mathbb{C}}^n\), Constr. Approx., 31, 139-147 (2010) · Zbl 1183.41009
[8] Bos, LP; Brudnyi, A.; Levenberg, N.; Totik, V., Tangential Markov inequalities on transcendental curves, Constr. Approx., 19, 339-354 (2003) · Zbl 1041.41010
[9] Bos, L.; Levenberg, N.; Milman, PD; Taylor, BA, Tangential Markov inequalities characterize algebraic submanifolds of \({\mathbb{R}}^N\), Indiana Univ. Math. J., 44, 115-138 (1995) · Zbl 0824.41015
[10] Bos, L.; Levenberg, N.; Milman, PD; Taylor, BA, Tangential Markov inequalities on real algebraic varieties, Indiana Univ. Math. J., 47, 1257-1272 (1998) · Zbl 0938.32008
[11] Bos, L.P., Milman, P.D.: On Markov and Sobolev type inequalities on sets in \({\mathbb{R}}^n\). In: Rassias, Th.M., Srivastava, H.M., Yanushauskas, A. (eds.) Topics in polynomials of one and several variables and their applications, pp. 81-100. World Sci., Singapore (1993) · Zbl 0865.46018
[12] Bos, LP; Milman, PD, Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains, Geom. Funct. Anal., 5, 853-923 (1995) · Zbl 0848.46022
[13] Bos, LP; Milman, PD, Tangential Markov inequalities on singular varieties, Indiana Univ. Math. J., 55, 65-73 (2006) · Zbl 1103.41012
[14] Brudnyi, A., Local inequalities for plurisubharmonic functions, Ann. Math., 149, 511-533 (1999) · Zbl 0927.31001
[15] Brudnyi, A., On local behavior of holomorphic functions along complex submanifolds of \({\mathbb{C}}^N\), Invent. Math., 173, 315-363 (2008) · Zbl 1149.32002
[16] Carleson, L.; Totik, V., Hölder continuity of Green’s functions, Acta Sci. Math., 70, 557-608 (2004) · Zbl 1076.30026
[17] Cartan, H., Differential calculus (1971), Paris: Hermann, Paris · Zbl 0223.35004
[18] van den Dries, L., Tame topology and o-minimal structures, LMS Lecture Note Series (1998), Cambridge: Cambridge University Press, Cambridge · Zbl 0953.03045
[19] Erdélyi, T.; Kroó, A., Markov-type inequalities on certain irrational arcs and domains, J. Approx. Theory, 130, 111-122 (2004) · Zbl 1063.41009
[20] Frerick, L., Extension operators for spaces of infinite differentiable Whitney jets, J. Reine Angew. Math., 602, 123-154 (2007) · Zbl 1124.46014
[21] Goncharov, A., A compact set without Markov’s property but with an extension operator for \({\cal{C}}^{\infty } \)-functions, Studia Math., 119, 27-35 (1996) · Zbl 0857.46013
[22] Hörmander, L.: An introduction to complex analysis in several variables. North-Holland, Amsterdam (1990) · Zbl 0685.32001
[23] Klimek, M., Pluripotential theory (1991), Oxford: Oxford University Press, Oxford · Zbl 0742.31001
[24] Kroó, A.; Szabados, J., Markov-Bernstein type inequalities for multivariate polynomials on sets with cusps, J. Approx. Theory, 102, 72-95 (2000) · Zbl 0953.41008
[25] Levenberg, N., Approximation in \({\mathbb{C}}^N\), Surv. Approx. Theory, 2, 92-140 (2006) · Zbl 1106.32012
[26] Levenberg, N., Ten lectures on weighted pluripotential theory, Dolomit. Res. Notes. Approx., 5, 1-59 (2012)
[27] Łojasiewicz, S., Ensembles semi-analytiques, Lecture Notes (1965), France: IHES, Bures-sur-Yvette, France
[28] Łojasiewicz, S., Introduction to complex analytic geometry (1991), Basel: Birkhäuser Verlag, Basel · Zbl 0747.32001
[29] Pawłucki, W.; Pleśniak, W., Markov’s inequality and \({{\cal{C}}}^{\infty }\) functions on sets with polynomial cusps, Math. Ann., 275, 467-480 (1986) · Zbl 0579.32020
[30] Pierzchała, R., UPC condition in polynomially bounded o-minimal structures, J. Approx. Theory, 132, 25-33 (2005) · Zbl 1073.32002
[31] Pierzchała, R., Siciak’s extremal function of non-UPC cusps. I, J. Math. Pures Appl., 94, 451-469 (2010) · Zbl 1205.32012
[32] Pierzchała, R., Markov’s inequality in the o-minimal structure of convergent generalized power series, Adv. Geom., 12, 647-664 (2012) · Zbl 1271.32014
[33] Pierzchała, R., On the Bernstein-Walsh-Siciak theorem, Studia Math., 212, 1, 55-63 (2012) · Zbl 1269.32007
[34] Pierzchała, R., Remez-type inequality on sets with cusps, Adv. Math., 281, 508-552 (2015) · Zbl 1373.41008
[35] Pierzchała, R., Markov’s inequality and polynomial mappings, Math. Ann., 366, 57-82 (2016) · Zbl 1484.32017
[36] Pleśniak, W., Invariance of the \(L\)-regularity of compact sets in \({\mathbb{C}}^N\) under holomorphic mappings, Trans. Amer. Math. Soc., 246, 373-383 (1978) · Zbl 0409.32014
[37] Pleśniak, W., Compact subsets of \({\mathbb{C}}^n\) preserving Markov’s inequality, Mat. Vesnik, 40, 295-300 (1988) · Zbl 0702.32007
[38] Pleśniak, W., Markov’s inequality and the existence of an extension operator for \({{\cal{C}}}^{\infty }\) functions, J. Approx. Theory, 61, 106-117 (1990) · Zbl 0702.41023
[39] Pleśniak, W., Siciak’s extremal function in complex and real analysis, Ann. Polon. Math., 80, 37-46 (2003) · Zbl 1022.32004
[40] Pleśniak, W.: Inégalité de Markov en plusieurs variables. Internat. J. Math. Math. Sci. 1-12, (2006) · Zbl 1153.41302
[41] Pleśniak, W., Multivariate Jackson inequality, J. Comput. Appl. Math., 233, 815-820 (2009) · Zbl 1181.41018
[42] Sadullaev, A.; Zeriahi, A., Hölder regularity of generic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16, 369-382 (2016) · Zbl 1351.32051
[43] Siciak, J., On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc., 105, 322-357 (1962) · Zbl 0111.08102
[44] Siciak, J., Extremal plurisubharmonic functions in \({\mathbb{C}}^n\), Ann. Polon. Math., 39, 175-211 (1981) · Zbl 0477.32018
[45] Siciak, J., Rapid polynomial approximation on compact sets in \({\mathbb{C}}^N\), Univ. Iagel. Acta Math., 30, 145-154 (1993) · Zbl 0838.32007
[46] Siciak, J., Wiener’s type sufficient conditions in \({\mathbb{C}}^N\), Univ. Iagel. Acta Math., 35, 47-74 (1997) · Zbl 0948.32031
[47] Totik, V., Polynomial inverse images and polynomial inequalities, Acta Math., 187, 139-160 (2001) · Zbl 0997.41005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.