×

Hölder continuity of the Green function and Markov brothers’ inequality. (English) Zbl 1322.32027

Let \(E\subset\mathbb C^N\) be compact. For \(\gamma\in(0,1]\) and \(B>0\) we say that \(E\) has the Hölder continuity property (\(E\in\text{HCP}(\gamma,B)\)) if \(V_E(z)\leq B\text{dist}^\gamma(z,E)\) for all \(z\in\mathbb C^N\), where \(V_E\) stands for the global extremal function of \(E\). For \(m\geq1\) and \(M>0\) we say that \(E\) has the V. Markov inequality (\(E\in\text{VMI}(m, M)\)) if
\[ \|D^\alpha P\|_E\leq M^{|\alpha|}\frac{(\deg P)^{m|\alpha|}}{(|\alpha|!)^{m-1}}\|P\|_E \]
for every \(\alpha\in\mathbb N_0^N\) and for every complex polynomial \(P\in\mathcal P(\mathbb C^N)\). The main results of the paper are the following theorems.
-
\(E\in\text{HCP}(\gamma, B) \Longrightarrow E\in\text{VMI}(1/\gamma, \sqrt{N}(B\gamma e)^{1/\gamma})\);
-
\(E\in\text{VMI}(m, M) \Longrightarrow E\in\text{HCP}(1/m, (MN)^\gamma m)\);
-
\(E\in\text{VMI}(m, M) \Longrightarrow C(E)\geq(N^{3/2}(B\gamma e^2)^{1/\gamma})^{-1}\).

MSC:

32U35 Plurisubharmonic extremal functions, pluricomplex Green functions
41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)

References:

[1] Andrievski, V.V.: The highest smoothness of the Green function implies the highest density of a set. Ark. Mat. 42, 217-238 (2004) · Zbl 1061.31003 · doi:10.1007/BF02385477
[2] Baran, M.: Plurisubharmonic extremal function and complex foliation for a complement of a convex subset of \(\mathbb{R}^n\). Mich. Math. J. 39, 395-404 (1992) · Zbl 0783.32009 · doi:10.1307/mmj/1029004594
[3] Baran, M.: Markov inequality on sets with polynomial parametrization. Ann. Pol. Math. 60, 69-79 (1994) · Zbl 0824.41014
[4] Baran, M.: Cauchy-Poisson transform and polynomial inequalities. Ann. Pol. Math. 95, 199-206 (2009) · Zbl 1163.31002 · doi:10.4064/ap95-3-1
[5] Baran, M., Bialas-Ciez, L.: Product property for capacities in \(\mathbb{C}^N\). Ann. Pol. Math. 106, 19-29 (2012) · Zbl 1254.32046 · doi:10.4064/ap106-0-2
[6] Baran, M., Bialas-Ciez, L., Milówka, B.: On the best exponent in Markov inequality. Potential Anal. 38, 635-651 (2013) · Zbl 1273.41008 · doi:10.1007/s11118-012-9290-0
[7] Bialas-Ciez, L.: Markov sets in \(\mathbb{C}\) are not polar. Bull. Pol. Acad. Sci., Math. 46, 83-89 (1998) · Zbl 0978.41008
[8] Bialas-Ciez, L.: Siciak’s extremal function via Bernstein and Markov constants for compact sets in \(\mathbb{C}^N\). Ann. Pol. Math. 106, 41-51 (2012) · Zbl 1254.32048 · doi:10.4064/ap106-0-4
[9] Bialas-Ciez, L., Eggink, R.: L-regularity of Markov sets and of m-perfect sets in the complex plane. Constr. Approx. 27, 237-252 (2008) · Zbl 1206.31003 · doi:10.1007/s00365-006-0669-9
[10] Bialas-Ciez, L., Eggink, R.: Equivalence of the global and local Markov inequalities in the complex plane, submitted · Zbl 1272.41009
[11] Bialas-Ciez, L., Kosek, M.: How to construct totally disconnected Markov sets? Ann. Mat. Pura Appl. (4) 190, 209-224 (2011) · Zbl 1298.41018
[12] Bos, L., Calvi, J.-P., Levenberg, N.: On the Siciak extremal function for real compact convex sets. Ark. Mat. 39, 245-262 (2001) · Zbl 1028.32015 · doi:10.1007/BF02384556
[13] Carleson, L., Totik, V.: Hölder continuity of Green’s functions. Acta Sci. Math. 70, 557-608 (2004) · Zbl 1076.30026
[14] Goetgheluck, P.: Markov’s inequality on locally Lipschitzian compact subsets of RN in Lp-spaces. J. Approx. Theory 49, 303-310 (1987) · Zbl 0643.41011 · doi:10.1016/0021-9045(87)90069-4
[15] Klimek, M.: Pluripotential Theory. London Mathematical Society Monographs New Series, vol. 6. Clarendon Press, Oxford (1991) · Zbl 0742.31001
[16] Kosek, M.: Hölder continuity property of filled-in Julia sets in \(\mathbb{C}^n\). Proc. Am. Math. Soc. 125, 2029-2032 (1997) · Zbl 0865.31006 · doi:10.1090/S0002-9939-97-03808-2
[17] Kosek, M.: Hölder continuity property of composite Julia sets. Bull. Pol. Acad. Sci., Math. 46, 391-399 (1998) · Zbl 0927.37026
[18] Kosek, M.: Hölder exponents for the pluricomplex Green function of Julia type sets. Indian J. Pure Appl. Math. 42, 475-492 (2011) · Zbl 1335.37028 · doi:10.1007/s13226-011-0029-1
[19] Kosek, M.: Hölder exponents of the Green functions of planar polynomial Julia sets. Ann. Mat. Pura Appl. (2012). doi:10.1007/s10231-012-0278-6 · Zbl 1254.32027 · doi:10.1007/s10231-012-0278-6
[20] Lelong, P., Gruman, L.: Entire Functions of Several Complex Variables. Springer, Berlin (1986) · Zbl 0583.32001 · doi:10.1007/978-3-642-70344-7
[21] Milówka, B.: Markov’s inequality and a generalized Pleśniak condition. East J. Approx. 11, 291-300 (2005) · Zbl 1141.41308
[22] Pawłucki, W., Pleśniak, W.: Markov’s inequality and \(\mathcal{C}^{\infty}\) functions on sets with polynomial cusps. Math. Ann. 275, 467-480 (1986) · Zbl 0579.32020 · doi:10.1007/BF01458617
[23] Pierzchała, R.: UPC condition in polynomially bounded o-minimal structures. J. Approx. Theory 132, 25-33 (2005) · Zbl 1073.32002 · doi:10.1016/j.jat.2004.10.005
[24] Pierzchała, R.: Siciak’s extremal function of non-UPC cusps. I. J. Math. Pures Appl. 94, 451-469 (2010) · Zbl 1205.32012 · doi:10.1016/j.matpur.2010.05.001
[25] Pleśniak, W.: Markov’s inequality and the existence of an extension operator for C∞ functions. J. Approx. Theory 61(1), 106-117 (1990) · Zbl 0702.41023 · doi:10.1016/0021-9045(90)90027-N
[26] Ransford, T., Rostand, J.: Hölder exponents of Green’s functions of Cantor sets. Comput. Methods Funct. Theory 8, 151-158 (2008) · Zbl 1151.31003 · doi:10.1007/BF03321678
[27] Shadrin, A., Twelve proofs of the Markov inequality, 233-298 (2004), Sofia
[28] Siciak, J.: Extremal plurisubharmonic functions in \(\mathbb{C}^N\). Ann. Pol. Math. 39, 175-211 (1981) · Zbl 0477.32018
[29] Siciak, J.: Wiener’s type sufficient conditions in Cn. Univ. Iagel. Acta Math. 35, 151-161 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.