×

Polynomial inverse images and polynomial inequalities. (English) Zbl 0997.41005

The paper contains far reaching extensions of the classical Bernstein and Markoff inequalities for the derivatives of polynomials. For the Bernstein case (pointwise estimate) the author shows the following result: Let \(E\) consist of a finite number of compact intervals and let \(\omega_E\) be the density of the equilibrium measure of \(E\). Then, for any positive integer \(n\) and any polynomial \(P\) of degree \(\leq n\), we have \[ \bigl|P'(x)\bigr |\leq\pi \omega_E(x) n\|P\|_E\;(x\in E) \tag{1} \] (where \(\|\cdot \|_E\) denotes the sup-norm on \(E)\). A similar result holds for arbitrary compact sets \(E\) on the real axis and for interior points \(x\) of \(E\) (if existent). Moreover, (1) turns out to be sharp in the sense that, for every \(\varepsilon >0\), every \(x\in\text{int}(E)\) and every \(n\) large enough, there is a polynomial \(P\not\equiv 0\) of degree \(\leq n\) such that \(|P'(x) |> (1-\varepsilon) \pi\omega_E (x)n\|P\|_E\). To formulate the extension of Markoff’s inequality for the finite union of intervals \(E=\cup^\ell_{i=1} [a_{2i -1}, a_{2i}]\), the author considers the sets \(E^j:= \{x\in E:|x-a_j |< |x-a_i |\), \(i\neq j\}\) of parts of \(E\) lying closer to \(a_j\) than to any other endpoint. The generalization of Markoff’s inequality turns out to be a set of inequalities, one around each endpoint \(a_j\): For each \(1\leq j\leq 2\ell\) we have \(\|P'\|_{E^j} \leq(1+o (1))M_jn^2 \|P\|_E\), with explicitly given (and asymptotically sharp) constants \(M_j\). The proofs use sets that are obtained as the inverse image of intervals under (special) polynomial mappings and an approximation result for general finite unions of compact intervals by such sets.

MSC:

41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
Full Text: DOI

References:

[1] Achyeser, N., [Akhiezer, N. I.], Über einige Funktionen, welche in zwei gegebenen Intervallen am wenigsten von Null abweichen.Bull. Acad. Sci. URSS Sér. Math. (7)[Izv. Akad. Nauk SSSR Sér. Math. (7)], 1932:9, 1163–1202. · JFM 58.1065.02
[2] Aptekarev, A. I., Asymptotic properties of polynomials orthogonal on a system of contours and periodic motions of Toda lattices.Mat. Sb. (N.S.), 125 (167) (1984), 231–258. (Russian); English translation inMath. USSR-Sb, 53 (1986), 223–260.
[3] Benkö, D. &Totik, V., Sets with interior extremal points for the Markoff inequality.J. Approx. Theory, 110 (2001), 261–265. · Zbl 0980.41011 · doi:10.1006/jath.2000.3549
[4] Borwein, P., Markov’s and Bernstein’s inequalities on disjoint intervals.Canad. J. Math., 33 (1981), 201–209. · Zbl 0458.41011 · doi:10.4153/CJM-1981-017-7
[5] DeVore, R. A. &Lorentz, G. G.,Constructive Approximation, uundlehren Math. Wiss, 303, Springer-Verlag, Berlin, 1993.
[6] Geronimo, J. S. &van Assche, W., Orthogonal polynomials on several intervals via a polynomial mapping.Trans. Amer. Math. Soc., 308 (1988), 559–581. · Zbl 0652.42009 · doi:10.1090/S0002-9947-1988-0951620-6
[7] Landkof, N. S.,Foundations of Modern Potential Theory. Grundlehren Math. Wiss., 180. Springer-Verlag, New York, 1972. · Zbl 0253.31001
[8] Peherstorfer, F., On Bernstein-Szego orthogonal polynomials on several intervals, I.SIAM J. Math. Anal., 21 (1990), 461–482. · Zbl 0688.42020 · doi:10.1137/0521025
[9] –, On Bernstein-Szego orthogonal polynomials on several intervals, II. Orthogonal polynomials with periodic recurrence coeffiecients.J. Approx. Theory, 64 (1991), 123–161. · Zbl 0721.42017 · doi:10.1016/0021-9045(91)90071-H
[10] –, Orthogonal and extremal polynomials on several intervals.J. Comput. Appl. Math., 48 (1993), 187–205. · Zbl 0790.42012 · doi:10.1016/0377-0427(93)90322-3
[11] –, Elliptic orthogonal and extremal polynomials.J. London Math. Soc. (3), 70 (1995), 604–624. · Zbl 0833.42012
[12] Peherstorfer, F., Approximation of several intervals by an inverse polynomial mapping. To appear inJ. Approx. Theory. · Zbl 1025.42014
[13] Peherstorfer, F. &Schiefermayr, K., Description of extremal polynomials on several invervals and their computation, I.Acta Math. Hungar., 83 (1999), 27–58. · Zbl 0927.41015 · doi:10.1023/A:1006607401740
[14] Peherstorfer, F. &Steinbauer, R., On polynomials orthogonal on several intervals.Ann. Numer. Math., 2 (1995), 353–370. · Zbl 0830.42019
[15] Ransford, T.,Potential Theory in the Complex Plane. London Math. Soc. Stud. Texts, 28. Cambridge Univ. Press, Cambridge, 1995. · Zbl 0828.31001
[16] Saff, E. B. &Totik, V.,Logarithmic Potentials with External Fields. Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997. · Zbl 0881.31001
[17] Stahl, H. &Totik, V.,General Orthogonal Polynomials. Encyclopedia Math. Appl., 43. Cambridge Univ. Press, Cambridge, 1992. · Zbl 0791.33009
[18] Szego, G., Über einen Satz des Herrn Serge Bernstein.Schr. Königsberg. Gel. Ges., 5 (1928/29), 59–70.
[19] Timan, A. F.,Theory of Approximation of Functions of a Real Variable. Dover, New York, 1994.
[20] Tsuji, M.,Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959. · Zbl 0087.28401
[21] Widom, H., Extremal polynomials associated with a system of curves in the complex plane.Adv. Math., 3 (1969), 127–232. · Zbl 0183.07503 · doi:10.1016/0001-8708(69)90005-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.