×

Future stability of the FLRW spacetime for a large class of perfect fluids. (English) Zbl 1465.35375

Authors’ abstract: We establish the future nonlinear stability of Friedmann-Lemaître-Robertson-Walker (FLRW) solutions to the Einstein-Euler equations of the universe filled with a large class of perfect fluids (the equations of state are allowed to be certain nonlinear or linear types both). Several previous results as specific examples can be covered in the results of this article. We emphasize that the future stability of FLRW metric for polytropic fluids with positive cosmological constant has been a difficult problem and cannot be directly generalized from the previous known results. Our result in this article has not only covered this difficult case for the polytropic fluids, but also unified more types of fluids in a same scheme of proofs.

MSC:

35Q76 Einstein equations
35Q31 Euler equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83F05 Relativistic cosmology
83C75 Space-time singularities, cosmic censorship, etc.
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics

References:

[1] Andersson, L.; Rendall, AD, Quiescent cosmological singularities, Commun. Math. Phys., 218, 3, 479-511 (2001) · Zbl 0979.83036
[2] Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, SD, Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests, Astrophys. Space Sci., 342, 1, 155-228 (2012) · Zbl 1314.83037
[3] Hachemi, B., Benaoum, Modified chaplygin gas cosmology, Adv. High Energy Phys., 2012, 1-12 (2012) · Zbl 1263.83077
[4] Bento, MC; Bertolami, O.; Sen, AA, Letter: Generalized chaplygin gas model: Dark energy-dark matter unification and CMBR constraints, General Relativ Gravit, 35, 11, 2063-2069 (2003) · Zbl 1044.83025
[5] Beyer, F., Oliynyk, T.A., Arturo Olvera-Santamaría, J.: The fuchsian approach to global existence for hyperbolic equations, Accepted for publication in Communications in Partial Differential Equations. arXiv:1907.04071
[6] Brauer, U.; Karp, L., Local existence of solutions of self gravitating relativistic perfect fluids, Commun. Math. Phys., 325, 105-141 (2014) · Zbl 1288.35466
[7] Brauer, U.; Rendall, A.; Reula, O., The cosmic no-hair theorem and the non-linear stability of homogeneous Newtonian cosmological models, Class. Quantum Gravity, 11, 2283 (1994) · Zbl 0815.53092
[8] Christodoulou, D.; Klainerman, S., The Global Nonlinear Stability of the Minkowski Space (1993), Princeton: Princeton University Press, Princeton · Zbl 0827.53055
[9] Dafermos, M., Holzegel, G.: Dynamic instability of solitons in 4+1 dimensional gravity with negative cosmological constant, https://www.dpmms.cam.ac.uk/ md384/ADSinstability.pdf (2006) · Zbl 1106.83014
[10] Debnath, U.; Banerjee, A.; Chakraborty, S., Role of modified chaplygin gas in accelerated universe, Class. Quantum Gravity, 21, 5609-5617 (2004) · Zbl 1065.83063
[11] Friedrich, H., On the existence of \(n\)-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, Commun. Math. Phys., 107, 587-609 (1986) · Zbl 0659.53056
[12] Friedrich, H., On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations, J. Differ. Geom., 34, 275-345 (1991) · Zbl 0737.53070
[13] Friedrich, H., Einstein equations and conformal structure: Existence of anti-de sitter-type space-times, J. Geom. Phys., 17, 2, 125-184 (1995) · Zbl 0840.53055
[14] Friedrich, H.; Rendall, A., The Cauchy Problem for the Einstein Equations, 127-223 (2000), Berlin: Springer, Berlin Heidelberg, Berlin · Zbl 1006.83003
[15] Hadžić, M.; Speck, J., The global future stability of the FLRW solutions to the dust-Einstein system with a positive cosmological constant, J. Hyperb. Differ. Equ., 12, 87-188 (2015) · Zbl 1333.35281
[16] Heydari-Fard, M.; Sepangi, HR, Generalized chaplygin gas as geometrical dark energy, Phys. Rev. D, 76, 10, 104009 (2007)
[17] Holzegel, G., Well-posedness for the massive wave equation on asymptotically anti-de sitter spacetimes, J. Hyperb. Differ. Equ., 09, 2, 239-261 (2012) · Zbl 1250.83025
[18] Holzegel, G.; Smulevici, J., Self-gravitating klein-gordon fields in asymptotically anti-de-sitter spacetimes, Ann. Henri Poincaré, 13, 4, 991-1038 (2011) · Zbl 1253.81065
[19] Kahya, EO; Pourhassan, B., The universe dominated by the extended chaplygin gas, Modern Phys. Lett. A, 30, 13, 1550070 (2015) · Zbl 1314.83056
[20] Kamenshchik, A.; Moschella, U.; Pasquier, V., Chaplygin-like gas and branes in black hole bulks, Phys. Lett. B, 487, 1-2, 7-13 (2000) · Zbl 0961.83024
[21] LeFloch, P.G., Wei, C.: Nonlinear stability of self-gravitating irrotational chaplygin fluids in a flrw geometry. Annales de l’Institut Henri Poincaré C, Analyse non linéaire (2020). doi:10.1016/j.anihpc.2020.09.005 · Zbl 1464.83026
[22] Lindblad, H.; Rodnianski, I., Global existence for the einstein vacuum equations in wave coordinates, Commun. Math. Phys., 256, 1, 43-110 (2005) · Zbl 1081.83003
[23] Lindblad, H.; Rodnianski, I., The global stability of minkowski space-time in harmonic gauge, Ann. Math., 171, 3, 1401-1477 (2010) · Zbl 1192.53066
[24] Liu, C.: Cosmological newtonian limits on large scales, Ph.D. thesis, Monash University (2018) · Zbl 1402.83116
[25] Liu, C.; Oliynyk, TA, Cosmological newtonian limits on large spacetime scales, Commun. Math. Phys., 364, 3, 1195-1304 (2018) · Zbl 1402.83116
[26] Liu, C.; Oliynyk, TA, Newtonian limits of isolated cosmological systems on long time scales, Ann. Henri Poincaré, 19, 7, 2157-2243 (2018) · Zbl 1394.83004
[27] Lottermoser, M., A convergent post-Newtonian approximation for the constraint equations in general relativity, Ann. de l’I.H.P. Phys. Théorique, 57, 279-317 (1992) · Zbl 0762.53053
[28] Lübbe, C.; Kroon, JAV, A conformal approach for the analysis of the non-linear stability of radiation cosmologies, Ann. Phys., 328, 1-25 (2013) · Zbl 1263.83188
[29] Majda, A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Mathematical Sciences, 30-51 (2012), New York: Springer, New York
[30] Makino, T.; Nishida, T., On a local existence theorem for the evolution equation of gaseous stars, Pattern and Waves—Qualitative Analysis of Nonlinear Partial Differential Equations, 459-479 (1986), Kinokuniya/North-Holland, Tokyo/Amsterdam: Elsevier, Kinokuniya/North-Holland, Tokyo/Amsterdam · Zbl 0623.35058
[31] Moschidis, G.: A proof of the instability of ads for the einstein-null dust system with an inner mirror, Ph.D. thesis, Princeton University (2018) · Zbl 1452.83009
[32] Oliynyk, T.A.: Future global stability for relativistic perfect fluids with linear equations of state \(p=k \rho\) where \(1/3<k<1/2\), arXiv:2002.12526
[33] Oliynyk, TA, The Newtonian limit for perfect fluids, Commun. Math. Phys., 276, 131-188 (2007) · Zbl 1194.83018
[34] Oliynyk, TA, Cosmological post-Newtonian expansions to arbitrary order, Commun. Math. Phys., 295, 431-463 (2010) · Zbl 1195.35286
[35] Oliynyk, TA, A rigorous formulation of the cosmological Newtonian limit without averaging, J. Hyperb. Differ. Equ., 7, 405-431 (2010) · Zbl 1204.83030
[36] Oliynyk, TA, The Newtonian limit on cosmological scales, Commun. Math. Phys., 339, 455-512 (2015) · Zbl 1352.35120
[37] Oliynyk, TA, Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant, Commun. Math. Phys., 346, 293-312 (2016) · Zbl 1346.83023
[38] Pedram, P.; Jalalzadeh, S., Quantum FRW cosmological solutions in the presence of chaplygin gas and perfect fluid, Phys. Lett. B, 659, 1-2, 6-13 (2008) · Zbl 1246.83269
[39] Rendall, AD, The initial value problem for a class of general relativistic fluid bodies, J. Math. Phys., 33, 1047-1053 (1992) · Zbl 0754.76098
[40] Rendall, AD, Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound, Class. Quantum Gravity, 21, 2445-2454 (2004) · Zbl 1054.83042
[41] Rendall, AD, Asymptotics of solutions of the einstein equations with positive cosmological constant, Ann. Henri Poincaré., 5, 1041-1064 (2004) · Zbl 1061.83008
[42] Rendall, AD, Intermediate inflation and the slow-roll approximation, Class. Quantum Gravity, 22, 9, 1655 (2005) · Zbl 1068.83020
[43] Rendall, AD, Dynamics of k-essence, Class. Quantum Gravity, 23, 1557-1569 (2006) · Zbl 1091.83041
[44] Ringström, H., The Bianchi IX attractor, Ann. Henri Poincaré, 2, 3, 405-500 (2001) · Zbl 0985.83002
[45] Ringström, H., Future stability of the Einstein-non-linear scalar field system, Invent. Math., 173, 123-208 (2008) · Zbl 1140.83314
[46] Ringström, H., The Cauchy Problem in General Relativity, , ESI Lectures in Mathematics and Physics (2009), Zürich: European Mathematical Society, Zürich · Zbl 1169.83003
[47] Rodnianski, I.; Speck, J., The nonlinear future stability of the FLRW family of solutions to the irrotational Euler-Einstein system with a positive cosmological constant, J. Eur. Math. Soc., 15, 2369-2462 (2013) · Zbl 1294.35164
[48] Rodnianski, I.; Speck, J., A regime of linear stability for the einstein-scalar field system with applications to nonlinear big bang formation, Ann. Math., 187, 1, 65-156 (2018) · Zbl 1384.83005
[49] Rodnianski, I.; Speck, J., Stable big bang formation in near-FLRW solutions to the einstein-scalar field and einstein-stiff fluid systems, Selecta Math., 24, 5, 4293-4459 (2018) · Zbl 1402.83120
[50] Speck, J., The nonlinear future stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant, Selecta Math., 18, 633-715 (2012) · Zbl 1251.83071
[51] Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V., The Chaplygin Gas as a Model for Dark Energy, The Tenth Marcel Grossmann (2006), SingaporeMeeting: World Scientific Publishing Company, SingaporeMeeting · Zbl 1179.83045
[52] Wald, RM, General Relativity (2010), USA: University of Chicago Press, USA · Zbl 0549.53001
[53] Yang, R., Large-scale structure in superfluid chaplygin gas cosmology, Phys. Rev. D, 89, 6, 063014 (2014)
[54] Zenginoglu, A., Hyperboloidal evolution with the Einstein equations, Class. Quant. Grav., 25, 195025 (2008) · Zbl 1151.83012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.