×

Newtonian limits of isolated cosmological systems on long time scales. (English) Zbl 1394.83004

Summary: We establish the existence of 1-parameter families of \(\epsilon\)-dependent solutions to the Einstein-Euler equations with a positive cosmological constant \(\Lambda >0\) and a linear equation of state \(p=\epsilon ^2 K \rho \), \(0<K\leq 1/3\), for the parameter values \(0<\epsilon < \epsilon _0\). These solutions exist globally to the future, converge as \(\epsilon \searrow 0\) to solutions of the cosmological Poisson-Euler equations of Newtonian gravity, and are inhomogeneous nonlinear perturbations of FLRW fluid solutions.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83F05 Relativistic cosmology
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
83C15 Exact solutions to problems in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)

Software:

GADGET

References:

[1] Blanchet, L, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativ., 17, 2, (2014) · Zbl 1316.83003 · doi:10.12942/lrr-2014-2
[2] Blanchet, L; Faye, G; Nissanke, S, On the structure of the post-Newtonian expansion in general relativity, Phys. Rev. D, 72, 44024, (2005) · doi:10.1103/PhysRevD.72.044024
[3] Brauer, U; Karp, L, Local existence of solutions of self gravitating relativistic perfect fluids, Commun. Math. Phys., 325, 105-141, (2014) · Zbl 1288.35466 · doi:10.1007/s00220-013-1854-3
[4] Brauer, U; Rendall, A; Reula, O, The cosmic no-hair theorem and the non-linear stability of homogeneous Newtonian cosmological models, Class. Quantum Gravity, 11, 2283-2296, (1994) · Zbl 0815.53092 · doi:10.1088/0264-9381/11/9/010
[5] Browning, G; Kreiss, HO, Problems with different time scales for nonlinear partial differential equations, SIAM J. Appl. Math., 42, 704-718, (1982) · Zbl 0506.35006 · doi:10.1137/0142049
[6] Buchert, T; Räsänen, S, Backreaction in late-time cosmology, Ann. Rev. Nucl. Part. Sci., 62, 57-79, (2012) · doi:10.1146/annurev.nucl.012809.104435
[7] Chandrasekhar, S, The post-Newtonian equations of hydrodynamics in general relativity, Astrophys. J., 142, 1488-1512, (1965) · doi:10.1086/148432
[8] Clarkson, C; Ellis, G; Larena, J; Umeh, O, Does the growth of structure affect our dynamical models of the universe? the averaging, backreaction and Fitting problems in cosmology, Rept. Prog. Phys., 74, 112901, (2011) · doi:10.1088/0034-4885/74/11/112901
[9] Crocce, M; etal., Simulating the universe with MICE: the abundance of massive clusters, Mon. Not. R. Astron. Soc., 403, 1253-1267, (2010) · doi:10.1111/j.1365-2966.2009.16194.x
[10] Dautcourt, G, Die newtonsche gravitationstheorie als strenger grenzfall der allgemeinen relativitätstheorie, Acta Phys. Pol., 25, 637-646, (1964)
[11] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1998) · Zbl 1257.47059
[12] Ehlers, J; Marcus, B (ed.); Dorn, GJW (ed.); Weingartner, P (ed.), On limit relations between, and approximative explanations of, physical theories VII, No. 114, 387-403, (1986), Amsterdam
[13] Einstein, A; Infeld, L; Hoffmann, B, The gravitational equations and the problem of motion, Ann. Math., 39, 65-100, (1938) · JFM 64.0769.01 · doi:10.2307/1968714
[14] Ellis, G, Inhomogeneity effects in cosmology, Class. Qauntum Gravity, 28, 164001, (2011) · Zbl 1225.83092 · doi:10.1088/0264-9381/28/16/164001
[15] Evrard, A; etal., Galaxy clusters in hubble volume simulations: cosmological constraints from sky survey populations, Astrophys. J., 573, 7, (2002) · doi:10.1086/340551
[16] Frauendiener, J, A note on the relativistic Euler equations, Class. Quantum Gravity, 20, l193-6, (2003) · Zbl 1038.83016 · doi:10.1088/0264-9381/20/14/102
[17] Friedrich, H, On the existence of n-geodesically complete or future complete solutions of einstein’s field equations with smooth asymptotic structure, Commun. Math. Phys., 107, 587-609, (1986) · Zbl 0659.53056 · doi:10.1007/BF01205488
[18] Friedrich, H, On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations, J. Differ. Geom., 34, 275-345, (1991) · Zbl 0737.53070 · doi:10.4310/jdg/1214447211
[19] Friedrich, H, Sharp asymptotics for Einstein-\(λ \)-dust flows, Commun. Math. Phys., 350, 1-42, (2016)
[20] Friedrich, H; Rendall, A, The Cauchy problem for the Einstein equations, einstein’s field equations and their physical implications, Lect. Notes Phys., 540, 127-223, (2000) · Zbl 1006.83003 · doi:10.1007/3-540-46580-4_2
[21] Futamase, T; Itoh, Y, The post-Newtonian approximation for relativistic compact binaries, Living Rev. Relativ., 10, 2, (2007) · Zbl 1255.83005 · doi:10.12942/lrr-2007-2
[22] Green, S; Wald, R, A new framework for analyzing the effects of small scale inhomogeneities in cosmology, Phys. Rev. D, 83, 084020, (2011) · doi:10.1103/PhysRevD.83.084020
[23] Green, S; Wald, R, Newtonian and relativistic cosmologies, Phys. Rev. D, 85, 063512, (2012) · doi:10.1103/PhysRevD.85.063512
[24] Hadžić, M; Speck, J, The global future stability of the FLRW solutions to the dust-Einstein system with a positive cosmological constant, J. Hyper. Differ. Equ., 12, 87-188, (2015) · Zbl 1333.35281 · doi:10.1142/S0219891615500046
[25] Heilig, U, On the existence of rotating stars in general relativity, Commun. Math. Phys., 166, 457-493, (1995) · Zbl 0813.53058 · doi:10.1007/BF02099884
[26] Hwang, J; Noh, H, Newtonian limit of fully nonlinear cosmological perturbations in einstein’s gravity, JCAP, 04, 035, (2013) · doi:10.1088/1475-7516/2013/04/035
[27] Hwang, J; Noh, H, Newtonian, post-Newtonian and relativistic cosmological perturbation theory, Nuc. Phys. B Proc. Suppl., 246, 191-195, (2014) · doi:10.1016/j.nuclphysbps.2013.10.085
[28] Hwang, J; Noh, H; Puetzfeld, D, Cosmological non-linear hydrodynamics with post-Newtonian corrections, JCAP, 03, 010, (2008) · doi:10.1088/1475-7516/2008/03/010
[29] Klainerman, S; Majda, A, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., 34, 481-524, (1981) · Zbl 0476.76068 · doi:10.1002/cpa.3160340405
[30] Klainerman, S; Majda, A, Compressible and incompressible fluids, Commun. Pure Appl. Math., 35, 629-651, (1982) · Zbl 0478.76091 · doi:10.1002/cpa.3160350503
[31] Kopeikin, S; Petrov, A, Post-Newtonian celestial dynamics in cosmology: field equations, Phys. Rev. D, 87, 044029, (2013) · doi:10.1103/PhysRevD.87.044029
[32] Kopeikin, S; Petrov, A, Dynamic field theory and equations of motion in cosmology, Ann. Phys., 350, 379-440, (2014) · Zbl 1344.81122 · doi:10.1016/j.aop.2014.07.029
[33] Kreiss, HO, Problems with different time scales for partial differential equations, Commun. Pure Appl. Math., 33, 399-439, (1980) · Zbl 0439.35043 · doi:10.1002/cpa.3160330310
[34] Künzle, H, Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics, Ann. Inst. Henri Poincaré, 17, 337-362, (1972)
[35] Künzle, H, Covariant Newtonian limit of Lorentz space-times, Gen. Relativ. Gravity, 7, 445-457, (1976) · Zbl 0349.53025 · doi:10.1007/BF00766139
[36] Künzle, H; Duval, C, Relativistic and non-relativistic classical field theory on five-dimensional spacetime, Class. Quantum Gravity, 3, 957-974, (1986) · Zbl 0604.70033 · doi:10.1088/0264-9381/3/5/024
[37] LeFloch, P.G., Wei, C.: The global nonlinear stability of self-gravitating irrotational Chaplygin fluids in a FRW geometry. Preprint [arXiv:1512.03754]
[38] Liu, C., Oliynyk, T.: Cosmological Newtonian limits on large spacetime scale. Commun. Math. Phys. (to appear)
[39] Lottermoser, M, A convergent post-Newtonian approximation for the constraint equations in general relativity, Annales de l’institut Henri Poincaré (A) Physique théorique, 57, 279-317, (1992) · Zbl 0762.53053
[40] Lübbe, C; Valiente-Kroon, J, A conformal approach for the analysis of the non-linear stability of radiation cosmologies, Ann. Phys., 328, 1-25, (2013) · Zbl 1263.83188 · doi:10.1016/j.aop.2012.10.011
[41] Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984) · Zbl 0537.76001 · doi:10.1007/978-1-4612-1116-7
[42] Matarrese, S; Terranova, D, Post-newtonian cosmological dynamics in Lagrangian coordinates, Mon. Not. R. Astron. Soc., 283, 400-418, (1996) · doi:10.1093/mnras/283.2.400
[43] Milillo, I; etal., Missing link: a nonlinear post-Friedmann framework for small and large scales, Phys. Rev. D, 92, 023519, (2015) · doi:10.1103/PhysRevD.92.023519
[44] Noh, H; Hwang, J, Cosmological post-Newtonian approximation compared with perturbation theory, Astrophys. J., 757, 145, (2012) · doi:10.1088/0004-637X/757/2/145
[45] Oliynyk, T, The Newtonian limit for perfect fluids, Commun. Math. Phys., 276, 131-188, (2007) · Zbl 1194.83018 · doi:10.1007/s00220-007-0334-z
[46] Oliynyk, T, Post-Newtonian expansions for perfect fluids, Commun. Math. Phys., 288, 847-886, (2009) · Zbl 1175.83027 · doi:10.1007/s00220-009-0738-z
[47] Oliynyk, T, Cosmological post-Newtonian expansions to arbitrary order, Commun. Math. Phys., 296, 431-463, (2010) · Zbl 1195.35286 · doi:10.1007/s00220-009-0931-0
[48] Oliynyk, T, A rigorous formulation of the cosmological Newtonian limit without averaging, J. Hyperbolic Differ. Equ., 7, 405-431, (2010) · Zbl 1204.83030 · doi:10.1142/S0219891610002189
[49] Oliynyk, T, Cosmological Newtonian limit, Phys. Rev. D, 89, 124002, (2014) · doi:10.1103/PhysRevD.89.124002
[50] Oliynyk, T, The Newtonian limit on cosmological scales, Commun. Math. Phys., 339, 455-512, (2015) · Zbl 1352.35120 · doi:10.1007/s00220-015-2418-5
[51] Oliynyk, T, Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant, Commun. Math. Phys., 346, 293-312, (2016) · Zbl 1346.83023 · doi:10.1007/s00220-015-2551-1
[52] Oliynyk, T., Robertson, C.: Linear cosmological perturbations on large scales via post-Newtonian expansions (in preparation)
[53] Räsänen, S, Applicability of the linearly perturbed FRW metric and Newtonian cosmology, Phys. Rev. D, 81, 103512, (2010) · doi:10.1103/PhysRevD.81.103512
[54] Rendall, A, The initial value problem for a class of general relativistic fluid bodies, J. Math. Phys., 33, 1047-1053, (1992) · Zbl 0754.76098 · doi:10.1063/1.529766
[55] Rendall, A, The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system, Commun. Math. Phys., 163, 89-112, (1994) · Zbl 0816.53058 · doi:10.1007/BF02101736
[56] Ringström, H, Future stability of the Einstein-non-linear scalar field system, Invent. Math., 173, 123-208, (2008) · Zbl 1140.83314 · doi:10.1007/s00222-008-0117-y
[57] Ringström, H.: The Cauchy Problem in General Relativity. European Mathematical Society, Zürich (2009) · Zbl 1169.83003 · doi:10.4171/053
[58] Rodnianski, I; Speck, J, The stability of the irrotational Euler-Einstein system with a positive cosmological constant, J. Eur. Math. Soc., 15, 2369-2462, (2013) · Zbl 1294.35164 · doi:10.4171/JEMS/424
[59] Schochet, S, Asymptotics for symmetric hyperbolic systems with a large parameter, J. Differ. Equ., 75, 1-27, (1988) · Zbl 0685.35014 · doi:10.1016/0022-0396(88)90126-X
[60] Schochet, S, Symmetric hyperbolic systems with a large parameter, Commun. Partial Differ. Equ., 11, 1627-1651, (1986) · Zbl 0651.35047 · doi:10.1080/03605308608820478
[61] Speck, J, The nonlinear future stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant, Sel. Math. New Ser., 18, 633-715, (2013) · Zbl 1251.83071 · doi:10.1007/s00029-012-0090-6
[62] Springel, V, The cosmological simulation code GADGET-2, Mon. Not. R. Astron. Soc., 364, 1105-1134, (2005) · doi:10.1111/j.1365-2966.2005.09655.x
[63] Springel, V; etal., Simulations of the formation, evolution and clustering of galaxies and quasars, Nature, 435, 629-636, (2005) · doi:10.1038/nature03597
[64] Taylor, M.E.: Partial Differential Equations III, Nonlinear Equations. Springer, New York (1996) · Zbl 0869.35004
[65] Walton, R, A symmetric hyperbolic structure for isentropic relativistic perfect fluids, Hous. J. Math., 31, 145-160, (2005) · Zbl 1082.35156
[66] Yamamoto, K; etal., Perturbed Newtonian description of the Lemaître model with non-negligible pressure, JCAP, 2016, 030, (2016) · doi:10.1088/1475-7516/2016/03/030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.