×

Emergence of rigid polycrystals from atomistic systems with Heitmann-Radin sticky disk energy. (English) Zbl 1462.74035

Summary: We investigate the emergence of rigid polycrystalline structures from atomistic particle systems. The atomic interaction is governed by a suitably normalized pair interaction energy, where the ‘sticky disk’ interaction potential models the atoms as hard spheres that interact when they are tangential. The discrete energy is frame invariant and no underlying reference lattice on the atomistic configurations is assumed. By means of \(\Gamma\)-convergence, we characterize the asymptotic behavior of configurations with finite surface energy scaling in the infinite particle limit. The effective continuum theory is described in terms of a piecewise constant field delineating the local orientation and micro-translation of the configuration. The limiting energy is local and concentrated on the grain boundaries, that is, on the boundaries of the zones where the underlying microscopic configuration has constant parameters. The corresponding surface energy density depends on the relative orientation of the two grains, their microscopic translation misfit, and the normal to the interface. We further provide a fine analysis of the surface energies at grain boundaries both for vacuum-solid and solid-solid phase transitions. The latter relies fundamentally on a structure result for grain boundaries showing that, due to the extremely brittle setup, interpolating boundary layers near cracks are energetically not favorable.

MSC:

74E15 Crystalline structure
74A25 Molecular, statistical, and kinetic theories in solid mechanics
74Q15 Effective constitutive equations in solid mechanics
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics

References:

[1] Allinger, NL, Molecular Structure: Understanding Steric and Electronic Effects from Molecular Mechanics (2010), New York: Wiley, New York · doi:10.1002/9780470608852
[2] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford 2000 · Zbl 0957.49001
[3] Au Yeung, Y.; Friesecke, G.; Schmidt, B., Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff-shape, Calc. Var. Partial Differ. Eq., 44, 81-100 (2012) · Zbl 1379.74002 · doi:10.1007/s00526-011-0427-6
[4] Bach, A., Braides, A., Cicalese, M.: Discrete-to-continuum limits of multi-body systems with bulk and surface long-range interactions. SIAM J. Math. Anal. (to appear). Preprint at arXiv:1910.00346 · Zbl 1446.49009
[5] Barroso, AC; Fonseca, I., Anisotropic singular perturbations-the vectorial case, Proc. R. Soc. Edinb. Sect. A, 124, 527-571 (1994) · Zbl 0804.49013 · doi:10.1017/S0308210500028778
[6] Bétermin, L., Knüpfer, H., Nolte, F.: Note on crystallization for alternating particle chains. Preprint at arXiv:1804.05743 · Zbl 1462.82002
[7] Blanc, X.; Lewin, M., The crystallization conjecture: a review, EMS Surv. Math. Sci., 2, 225-306 (2015) · Zbl 1341.82010 · doi:10.4171/EMSS/13
[8] Braides, A.: \( \Gamma \)-convergence for Beginners. Oxford University Press, Oxford 2002 · Zbl 1198.49001
[9] Braides, A., Conti, S., Garroni, A.: Density of polyhedral partitions. Calc. Var. Partial Differ. Equ. 56, Paper No. 28, 2017 · Zbl 1366.49051
[10] Cagnetti, F.; Dal Maso, G.; Scardia, L.; Zeppieri, CI, \( \Gamma \)-convergence of free-discontinuity problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36, 1035-1079 (2019) · Zbl 1417.49010 · doi:10.1016/j.anihpc.2018.11.003
[11] Cicalese, M.; Leonardi, GP, Maximal fluctuations on periodic lattices: an approach via quantitative Wulff inequalities, Commun. Math. Phys., 375, 1931-1944 (2020) · Zbl 1445.74005 · doi:10.1007/s00220-019-03612-3
[12] Conti, S.; Fonseca, I.; Leoni, G., A \(\Gamma \)-convergence result for the two-gradient theory of phase transitions, Commun. Pure Appl. Math., 55, 857-936 (2002) · Zbl 1029.49040 · doi:10.1002/cpa.10035
[13] Conti, S.; Schweizer, B., Rigidity and gamma convergence for solid-solid phase transitions with \(SO(2)\) invariance, Commun. Pure Appl. Math., 59, 830-868 (2006) · Zbl 1146.74018 · doi:10.1002/cpa.20115
[14] Dal Maso, G.: An Introduction to \(\Gamma \)-convergence. Birkhäuser, Boston 1993 · Zbl 0816.49001
[15] Davoli, E., Friedrich, M.: Two-well rigidity and multidimensional sharp-interface limits for solid-solid phase transitions. Calc. Var. Partial Differ. Equ. 59, Paper No. 44, 2020 · Zbl 1432.74182
[16] Davoli, E.; Piovano, P.; Stefanelli, U., Wulff shape emergence in graphene, Math. Models Methods Appl. Sci., 26, 2277-2310 (2016) · Zbl 1355.82073 · doi:10.1142/S0218202516500536
[17] Davoli, E.; Piovano, P.; Stefanelli, U., Sharp \(N^{3/4}\) law for the minimizers of the edge-isoperimetric problem on the triangular lattice, J. Nonlin. Sci., 27, 627-660 (2017) · Zbl 1383.82063 · doi:10.1007/s00332-016-9346-1
[18] De Luca, L.; Friesecke, G., Crystallization in two dimensions and a discrete Gauss-Bonnet Theorem, J. Nonlinear Sci., 28, 69-90 (2017) · Zbl 1382.82047 · doi:10.1007/s00332-017-9401-6
[19] De Luca, L.; Friesecke, G., Classification of particle numbers with unique Heitmann-Radin minimizer, J. Stat. Phys., 167, 1586-1592 (2017) · Zbl 1376.82017 · doi:10.1007/s10955-017-1781-3
[20] De Luca, L.; Novaga, M.; Ponsiglione, M., \(Gamma\)-convergence of the Heitmann-Radin sticky disc energy to the crystalline perimeter, J. Nonlinear Sci., 29, 1273-1299 (2019) · Zbl 1425.74108 · doi:10.1007/s00332-018-9517-3
[21] E, W., Li, D.: On the crystallization of 2D hexagonal lattices. Commun. Math. Phys. 286, 1099-1140, 2009 · Zbl 1180.82191
[22] Evans, LC; Gariepy, RF, Measure Theory and Fine Properties of Functions (1992), Boca Raton: CRC Press, Boca Raton · Zbl 0804.28001
[23] Fanzon, S.; Palombaro, M.; Ponsiglione, M., Derivation of linearized polycrystals from a two-dimensional system of edge dislocations, SIAM J. Math. Anal., 51, 3956-3981 (2019) · Zbl 1425.74071 · doi:10.1137/18M118726X
[24] Flatley, LC; Theil, F., Face-centered cubic crystallization of atomistic configurations, Arch. Ration. Mech. Anal., 218, 363-416 (2015) · Zbl 1335.82006 · doi:10.1007/s00205-015-0862-1
[25] Fonseca, I.; Tartar, L., The gradient theory of phase transitions for systems with two potential wells, Proc. R. Soc. Edinb. Sect. A, 111, 89-102 (1989) · Zbl 0676.49005 · doi:10.1017/S030821050002504X
[26] Friedrich, M.; Kreutz, L., Crystallization in the hexagonal lattice for ionic dimers, Math. Models Methods Appl. Sci., 29, 1853-1900 (2019) · Zbl 1447.82032 · doi:10.1142/S0218202519500362
[27] Friedrich, M.; Kreutz, L., Finite crystallization and Wulff shape emergence for ionic compounds in the square lattice, Nonlinearity, 33, 1240-1296 (2020) · Zbl 1434.82084 · doi:10.1088/1361-6544/ab591f
[28] Friedrich, M.; Solombrino, F., Functionals defined on piecewise rigid functions: Integral representation and \(\Gamma \)-convergence, Arch. Ration. Mech. Anal., 236, 1325-1387 (2020) · Zbl 1436.49016 · doi:10.1007/s00205-020-01493-8
[29] Friedrich, M.; Stefanelli, U., Crystallization in a one-dimensional periodic landscape, J. Stat. Phys., 179, 485-501 (2020) · Zbl 1437.82024 · doi:10.1007/s10955-020-02537-9
[30] Friesecke, G.; Theil, F.; Engquist, B., Molecular geometry optimization, models, The Encyclopedia of Applied and Computational Mathematics (2015), Berlin: Springer, Berlin
[31] Gardner, CS; Radin, C., The infinite-volume ground state of the Lennard-Jones potential, J. Stat. Phys., 20, 719-724 (1979) · doi:10.1007/BF01009521
[32] Harborth, H., Lösung zu Problem 664 a, Elem. Math., 29, 14-15 (1974)
[33] Heitmann, R.; Radin, C., The ground state for sticky disks, J. Stat. Phys., 22, 281-287 (1980) · doi:10.1007/BF01014644
[34] Jansen, S., König, W., Schmidt, B., Theil, F.: Surface energy and boundary layers for a chain of atoms at low temperature. Submitted. Preprint at arxiv:1904.06169, 2019 · Zbl 1456.82666
[35] Jansen, S., König, W., Schmidt, B., Theil, F.: Distribution of cracks in a chain of atoms at low temperature. In preparation, 2020 · Zbl 1456.82666
[36] Kitavtsev, G.; Luckhaus, S.; Rüland, A., Surface energies emerging in a microscopic, two-dimensional two-well problem, Proc. R. Soc. Edinb. Sect. A, 147, 1041-1089 (2017) · Zbl 1429.74078 · doi:10.1017/S0308210516000433
[37] Lewars, EG, Computational Chemistry (2011), New York: Springer, New York · doi:10.1007/978-90-481-3862-3
[38] Lauteri, G., Luckhaus, S.: Submitted. Preprint at arxiv:1608.06155, 2016
[39] Mainini, E.; Piovano, P.; Schmidt, B.; Stefanelli, U., \(N^{3/4}\) law in the cubic lattice, J. Stat. Phys., 176, 1480-1499 (2019) · Zbl 1426.82065 · doi:10.1007/s10955-019-02350-z
[40] Mainini, E.; Piovano, P.; Stefanelli, U., Finite crystallization in the square lattice, Nonlinearity, 27, 717-737 (2014) · Zbl 1292.82043 · doi:10.1088/0951-7715/27/4/717
[41] Mainini, E., Schmidt, B.: Maximal fluctuations around the Wulff shape for edge-isoperimetric sets in \({\mathbb{Z}}^d \): a sharp scaling law. Submitted. Preprint at arXiv:2003.01679, 2020 · Zbl 1454.05121
[42] Mainini, E.; Stefanelli, U., Crystallization in carbon nanostructures, Commun. Math. Phys., 328, 545-571 (2014) · Zbl 1391.82058 · doi:10.1007/s00220-014-1981-5
[43] Radin, C., The ground state for soft disks, J. Stat. Phys., 26, 365-373 (1981) · doi:10.1007/BF01013177
[44] Read, WT; Shockley, W., Dislocation models of crystal grain boundaries, Phys. Rev., 78, 275-289 (1950) · Zbl 0037.13303 · doi:10.1103/PhysRev.78.275
[45] Schmidt, B., Ground states of the 2D sticky disc model: fine properties and \(N^{3/4}\) law for the deviation from the asymptotic Wulff shape, J. Stat. Phys., 153, 727-738 (2013) · Zbl 1292.82027 · doi:10.1007/s10955-013-0852-3
[46] Sternberg, P., The effect of a singular perturbation on nonconvex variational problems, Arch. Ration. Mech. Anal., 101, 209-260 (1988) · Zbl 0647.49021 · doi:10.1007/BF00253122
[47] Theil, F., A proof of crystallization in two dimensions, Commun. Math. Phys., 262, 209-236 (2006) · Zbl 1113.82016 · doi:10.1007/s00220-005-1458-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.