×

Crystallization in two dimensions and a discrete Gauss-Bonnet theorem. (English) Zbl 1382.82047

Summary: We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann-Radin crystallization theorem [R. C. Heitmann and C. Radin, “The ground state for sticky disks”, J. Stat. Phys. 22, No. 3, 281–287 (1980; doi:10.1007/BF01014644)], which concerns a system of \(N\) identical atoms in two dimensions interacting via the idealized pair potential \(V(r)=+\infty\) if \(r<1\), \(-1\) if \(r=1\), 0 if \(r>1\). This is done by endowing the bond graph of a general particle configuration with a suitable notion of discrete curvature, and appealing to a discrete Gauss-Bonnet theorem [O. Knill, Elem. Math. 67, No. 1, 1–17 (2012; Zbl 1269.53011)] which, as its continuous cousins, relates the sum/integral of the curvature to topological invariants. This leads to an exact geometric decomposition of the Heitmann-Radin energy into (i) a combinatorial bulk term, (ii) a combinatorial perimeter, (iii) a multiple of the Euler characteristic, and (iv) a natural topological energy contribution due to defects. An analogous exact geometric decomposition is also established for soft potentials such as the Lennard-Jones potential \(V(r)=r^{-6}-2r^{-12}\), where two additional contributions arise, (v) elastic energy and (vi) energy due to non-bonded interactions.

MSC:

82D25 Statistical mechanics of crystals
05C10 Planar graphs; geometric and topological aspects of graph theory
74E15 Crystalline structure

Citations:

Zbl 1269.53011

References:

[1] Au Yeung, Y., Friesecke, G., Schmidt, B.: Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape. Calc. Var. Partial Differ. Equ. 44(1-2), 81-100 (2012) · Zbl 1379.74002 · doi:10.1007/s00526-011-0427-6
[2] Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987) · Zbl 0703.68099
[3] Blanc, X.: Lower bound for the interatomic distance in Lennard-Jones clusters. Comput. Optim. Appl. 29(1), 5-12 (2004) · Zbl 1065.81135 · doi:10.1023/B:COAP.0000039486.97389.87
[4] Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255-306 (2015) · Zbl 1341.82010 · doi:10.4171/EMSS/13
[5] Cameron, M., Vanden-Eijnden, E.: Flows in complex networks: theory, algorithms, and application to Lennard-Jones cluster rearrangement. J. Stat. Phys. 156(3), 427-454 (2014) · Zbl 1301.82031 · doi:10.1007/s10955-014-0997-8
[6] Davoli, E., Piovano, P., Stefanelli, U.: Sharp \[N^{3/4}\] N3/4 law for the minimizers of the edge-isoperimetric problem on the triangular lattice. J. Nonlinear Sci. 27(2), 627-660 (2017) · Zbl 1383.82063 · doi:10.1007/s00332-016-9346-1
[7] De Luca, L., Friesecke, G.: Classification of particle numbers with unique Heitmann-Radin minimizer. J. Stat. Phys. 167(6), 1586-1592 (2017) · Zbl 1376.82017
[8] De Luca, L., Friesecke, G.: In preparation
[9] Dobrushin, R.L., Kotecky, R., Shlosman, S.B.: The Wulff Construction: A Global Shape from Local Interactions. Providence, AMS (1992) · Zbl 0917.60103
[10] E, W., Li, D.: On the crystallization of 2D hexagonal lattices. Comm. Math. Phys. 286(3), 1099-1140 (2009) · Zbl 1180.82191
[11] Federer, H.: Geometric Measure Theory. Springer, Berlin (2014) · Zbl 0874.49001
[12] Flatley, L.C., Tarasov, A., Taylor, M., Theil, F.: Packing twelve spherical caps to maximize tangencies. J. Comput. Appl. Math. 254, 220-225 (2013) · Zbl 1292.52019 · doi:10.1016/j.cam.2013.03.036
[13] Flatley, L.C., Theil, F.: Face-centered cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 218(1), 363-416 (2015) · Zbl 1335.82006 · doi:10.1007/s00205-015-0862-1
[14] Friesecke, G., Theil, F.: Molecular Geometry Optimization, Models, Encyclopedia of Applied and Computational Mathematics. Springer, Berlin (2015). doi:10.1007/978-3-540-70529-1_239 · doi:10.1007/978-3-540-70529-1_239
[15] Garroni, A., Leoni, G., Ponsiglione, M.: Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. 12(5), 1231-1266 (2010) · Zbl 1200.74017 · doi:10.4171/JEMS/228
[16] Gromov, M.: Hyperbolic groups. In: Gersten, SM. (ed) Essays in group theory pp. 75-263. M.S.R.I. Publ. 8, Springer, (1987) · Zbl 0634.20015
[17] Harborth, H.: Lösung zu Problem 664A. Elem. Math. 29, 14-15 (1974)
[18] Heitmann, R.C., Radin, C.: The ground states for sticky discs. J. Stat. Phys. 22(3), 281-287 (1980) · doi:10.1007/BF01014644
[19] Higuchi, Y.: Combinatorial curvature for planar graphs. J. Graph Theory 38(4), 220-229 (2001) · Zbl 0996.05041 · doi:10.1002/jgt.10004
[20] Knill, O.: A discrete Gauss-Bonnet type theorem. Elem. Math. 67, 1-17 (2012) · Zbl 1269.53011 · doi:10.4171/EM/188
[21] Knill, O.: A graph theoretical Gauss-Bonnet-Chern theorem, arXiv:1111.5395, (2011) · Zbl 1269.53011
[22] Knill, O.: Slides of talk at Joint Mathematics Meetings (JMM), Baltimore, (2014). http://www.math.harvard.edu/ knill/seminars/baltimore/baltimore.pdf
[23] Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Comm. Math. Phys. 328(2), 545-571 (2014) · Zbl 1391.82058 · doi:10.1007/s00220-014-1981-5
[24] Radin, C.: The ground states for soft discs. J. Stat. Phys. 26(2), 365-373 (1981) · doi:10.1007/BF01013177
[25] Schmidt, B.: Ground states of the 2D sticky disc model: fine properties and \[N^{3/4}\] N3/4 law for the deviation from the asymptotic Wulff shape. J. Stat. Phys. 153(4), 727-738 (2013) · Zbl 1292.82027 · doi:10.1007/s10955-013-0852-3
[26] Theil, F.: A proof of crystallization in two dimensions. Comm. Math. Phys. 262(1), 209-236 (2006) · Zbl 1113.82016 · doi:10.1007/s00220-005-1458-7
[27] Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow ad solid surfaces. Nature 389, 360-362 (1997) · doi:10.1038/38686
[28] Wales, D.J.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 Atoms. J. Phys. Chem. A 101, 5111-5116 (1997) · doi:10.1021/jp970984n
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.