×

Surface energy and boundary layers for a chain of atoms at low temperature. (English) Zbl 1456.82666

Summary: We analyze the surface energy and boundary layers for a chain of atoms at low temperature for an interaction potential of Lennard-Jones type. The pressure (stress) is assumed to be small but positive and bounded away from zero, while the temperature \(\beta^{-1}\) goes to zero. Our main results are: (1) As \(\beta \rightarrow \infty\) at fixed positive pressure \(p > 0\), the Gibbs measures \(\mu_\beta\) and \(\nu_\beta\) for infinite chains and semi-infinite chains satisfy path large deviations principles. The rate functions are bulk and surface energy functionals \(\overline{\mathcal{E}}_\text{bulk}\) and \(\overline{\mathcal{E}}_\text{surf}\). The minimizer of the surface functional corresponds to zero temperature boundary layers; (2) The surface correction to the Gibbs free energy converges to the zero temperature surface energy, characterized with the help of the minimum of \(\overline{\mathcal{E}}_\text{surf}\); (3) The bulk Gibbs measure and Gibbs free energy can be approximated by their Gaussian counterparts; (4) Bounds on the decay of correlations are provided, some of them uniform in \(\beta\).

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
81V45 Atomic physics
60F10 Large deviations
74A25 Molecular, statistical, and kinetic theories in solid mechanics

References:

[1] Adams, S., Kotecký, R., Müller, S.: Strict convexity of the surface tension for non-convex potentials, Online preprint arXiv:1606.09541v1 [math-ph], 2016
[2] Aumann, S., Spontaneous breaking of rotational symmetry with arbitrary defects and a rigidity estimate, J. Stat. Phys., 160, 1, 168-208 (2015) · Zbl 1323.82046
[3] Bach, V., Møller, J.S.: Correlation at low temperature. I. Exponential decay. J. Funct. Anal. 203(1), 93-148, 2003 · Zbl 1031.82003
[4] Baladi, V., The Magnet and The Butterfly: Thermodynamic Formalism and The Ergodic Theory of Chaotic Dynamics, Development of Mathematics 1950-2000, 97-133 (2000), Basel: Birkhäuser, Basel · Zbl 0982.37014
[5] Baladi, V., Positive Transfer Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics (2000), River Edge: World Scientific Publishing Co. Inc., River Edge · Zbl 1012.37015
[6] Bavaud, F., Choquard, Ph., Fontaine, J.-R.: Statistical mechanics of elastic moduli. J. Stat. Phys. 42(3-4), 621-646, 1986
[7] Bellissard, J.; Radin, C.; Shlosman, S., The characterization of ground states, J. Phys. A, 43, 30, 305001, 7 (2010) · Zbl 1196.82084
[8] Born, M., Huang, K.: Dynamical theory of crystal lattices, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 1998, Reprint of the 1954 original.
[9] Bovier, A., den Hollander, F.: Metastability. A Potential-Theoretic Approach. Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, vol. 351. Springer, Cham 2015 · Zbl 1339.60002
[10] Blanc, X.; Le Bris, C.; Legoll, F.; Patz, C., Finite-temperature coarse-graining of one-dimensional models: mathematical analysis and computational approaches, J. Nonlinear Sci., 20, 2, 241-275 (2010) · Zbl 1204.37081
[11] Blanc, X.; Lewin, M., The crystallization conjecture: a review, EMS Surv. Math. Sci., 2, 2, 225-306 (2015) · Zbl 1341.82010
[12] Braides, A.; Cicalese, M., Surface energies in nonconvex discrete systems, Math. Models Methods Appl. Sci., 17, 7, 985-1037 (2007) · Zbl 1205.82036
[13] Brydges, D.; Fröhlich, J.; Spencer, T., The random walk representation of classical spin systems and correlation inequalities, Commun. Math. Phys., 83, 1, 123-150 (1982)
[14] Chazottes, J-R; Gambaudo, J-M; Ugalde, E., Zero-temperature limit of one-dimensional Gibbs states via renormalization: the case of locally constant potentials, Ergodic Theory Dyn. Syst., 31, 4, 1109-1161 (2011) · Zbl 1230.37018
[15] Chazottes, J-R; Hochman, M., On the zero-temperature limit of Gibbs states, Comm. Math. Phys., 297, 1, 265-281 (2010) · Zbl 1203.82015
[16] Deimling, K., Nonlinear Functional Analysis (1985), Berlin: Springer-Verlag, Berlin · Zbl 0559.47040
[17] Dembo, A.; Zeitouni, O., Large Deviations Techniques and Applications, Applications of Mathematics (1998), New York: Springer-Verlag, New York · Zbl 0896.60013
[18] Feller, W., An Introduction to Probability Theory and its Applications (1971), New York: Wiley, New York · Zbl 0219.60003
[19] Feng, J.; Kurtz, TG, Large Deviations for Stochastic Processes, Mathematical Surveys and Monographs (2006), Providence: American Mathematical Society, Providence · Zbl 1113.60002
[20] Funaki, T.; Spohn, H., Motion by mean curvature from the Ginzburg-Landau \(\nabla \phi\) interface model, Commun. Math. Phys., 185, 1, 1-36 (1997) · Zbl 0884.58098
[21] Gallavotti, G.; Miracle-Solé, S., Absence of phase transitions in hard-core one-dimensional systems with long-range interactions, J. Math. Phys., 11, 147-154 (1970)
[22] Gardner, CS; Radin, C., The infinite-volume ground state of the Lennard-Jones potential, J. Stat. Phys., 20, 6, 719-724 (1979)
[23] Georgii, H-O, Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics (2011), Berlin: Walter de Gruyter and Co., Berlin · Zbl 1225.60001
[24] Helffer, B., Semiclassical Analysis, Witten Laplacians, and Statistical Mechanics, Series in Partial Differential Equations and Applications (2002), River Edge: World Scientific Publishing Co., Inc, River Edge · Zbl 1046.82001
[25] Heydenreich, M.; Merkl, F.; Rolles, SWW, Spontaneous breaking of rotational symmetry in the presence of defects, Electron. J. Probab., 19, 111, 17 (2014) · Zbl 1307.60142
[26] Jansen, S., Mayer and virial series at low temperature, J. Stat. Phys., 147, 4, 678-706 (2012) · Zbl 1252.82045
[27] Jansen, S.; König, W.; Metzger, B., Large deviations for cluster size distributions in a continuous classical many-body system, Ann. Appl. Probab., 25, 2, 930-973 (2015) · Zbl 1318.82014
[28] Jansen, S., König, W., Schmidt, B., Theil, F.: Distribution of cracks in a chain of atoms at low temperature. Online preprint arXiv:2011.12213 [math-ph], 2020
[29] Klein, D., Uniqueness of one-dimensional continuum Gibbs states, Commun. Math. Phys., 97, 4, 595-604 (1985) · Zbl 0573.60093
[30] Kotecký, R.; Luckhaus, S., Nonlinear elastic free energies and gradient Young-Gibbs measures, Commun. Math. Phys., 326, 3, 887-917 (2014) · Zbl 1288.82014
[31] Kreĭn, MG; Rutman, MA, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N. S.), 3, 1, 3-95 (1948) · Zbl 0030.12902
[32] Lebowitz, JL; Presutti, E., Statistical mechanics of systems of unbounded spins, Commun. Math. Phys., 50, 3, 195-218 (1976)
[33] Lieb, EH; Mattis, D.; Lieb, EH; Mattis, DC, Chapter 1 - Classical Statistical Mechanics, Mathematical Physics in One Dimension, 3-24 (1966), Cambridge: Academic Press, Cambridge
[34] Menz, G., A Brascamp-Lieb type covariance estimate, Electron. J. Probab., 19, 78, 15 (2014) · Zbl 1302.82026
[35] Møller, J.S.: The low-temperature limit of transfer operators in fixed dimension. Ann. Henri Poincaré2(6), 1099-1137, 2001 · Zbl 0992.82005
[36] Otto, F.; Reznikoff, MG, A new criterion for the logarithmic Sobolev inequality and two applications, J. Funct. Anal., 243, 1, 121-157 (2007) · Zbl 1109.60013
[37] Papangelou, F., On the absence of phase transition in one-dimensional random fields. I. Sufficient conditions, Z. Wahrsch. Verw. Gebiete, 67, 3, 239-254 (1984) · Zbl 0545.60098
[38] Papangelou, F., On the absence of phase transition in one-dimensional random fields. II. Superstable spin systems, Z. Wahrsch. Verw. Gebiete, 67, 3, 255-263 (1984) · Zbl 0545.60099
[39] Penrose, O., Statistical mechanics of nonlinear elasticity, Markov Process. Related Fields, 8, 2, 351-364 (2002) · Zbl 1011.82001
[40] Pollicott, M., Rates of mixing for potentials of summable variation, Trans. Am. Math. Soc., 352, 2, 843-853 (2000) · Zbl 0986.37005
[41] Presutti, E., Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Theoretical and Mathematical Physics (2009), Berlin: Springer, Berlin · Zbl 1156.82001
[42] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. IV. Analysis of Operators (1978), New York: Academic Press, New York · Zbl 0401.47001
[43] Ruelle, D., Statistical mechanics of a one-dimensional lattice gas, Commun. Math. Phys., 9, 267-278 (1968) · Zbl 0165.29102
[44] Ruelle, D., Statistical Mechanics: Rigorous Results (1969), New York: W. A. Benjamin Inc, New York · Zbl 0177.57301
[45] Ruelle, D., Probability estimates for continuous spin systems, Commun. Math. Phys., 50, 3, 189-194 (1976)
[46] Ruelle, D.: Thermodynamic formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publishing Co., Reading, Mass., 1978, The mathematical structures of classical equilibrium statistical mechanics, With a foreword by G. Gallavotti and G. -C. Rota · Zbl 0401.28016
[47] Runa, E.: Sobolev and SBV representations for large volume limit of Gibbs measures, Online preprint arXiv:1510.06980v3 [math-ph], 2015
[48] Sarig, O., Subexponential decay of correlations, Invent. Math., 150, 3, 629-653 (2002) · Zbl 1042.37005
[49] Scardia, L.; Schlömerkemper, A.; Zanini, C., Boundary layer energies for nonconvex discrete systems, Math. Models Methods Appl. Sci., 21, 4, 777-817 (2011) · Zbl 1268.49016
[50] Schäffner, M.; Schlömerkemper, A., On Lennard-Jones systems with finite range interactions and their asymptotic analysis, Netw. Heterog. Media, 13, 95 (2018) · Zbl 1407.49015
[51] Shapeev, AV; Luskin, M., Approximation of crystalline defects at finite temperature, Multiscale Model. Simul., 15, 1830-1846 (2017) · Zbl 1378.82046
[52] Tadmor, EB; Miller, RE, Modeling Materials: Continuum, Atomistic and Multiscale Techniques (2011), Cambridge: Cambridge University Press, Cambridge · Zbl 1235.80001
[53] Takahashi, H., A simple method for treating the statistical mechanics of one-dimensional substances, Proc. Phys. Math. Soc. Jpn., 24, 60-62 (1942)
[54] Truskinovsky, L.; Batra, RC; Beatty, MF, Fracture as a phase transition, Contemporary Research in The Mechanics and Mathematics of Materials, 322-332 (1996), Barcelona: International Center for Numerical Methods in Engineering, Barcelona
[55] van Enter, ACD; Ruszel, WM, Chaotic temperature dependence at zero temperature, J. Stat. Phys., 127, 3, 567-573 (2007) · Zbl 1147.82324
[56] Weiner, JH, Statistical Mechanics of Elasticity (2002), Mineola, NY: Dover Publications Inc, Mineola, NY · Zbl 1032.82001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.