×

Anisotropic singular perturbations – the vectorial case. (English) Zbl 0804.49013

Summary: We obtain the \(\Gamma (L^ 1 (\Omega))\)-limit of the sequence \(J_ \varepsilon (u)= {1\over \varepsilon} E_ \varepsilon (u)\), where \(E_ \varepsilon\) is the family of anisotropic perturbations \[ E_ \varepsilon (u):= \int_ \Omega W(u(x)) dx+ \varepsilon^ 2 \int_ \Omega h^ 2(x, \nabla u(x))dx \] of the nonconvex functional of vector- valued functions \(E_ 0(u)= \int_ \Omega W(u(x))dx\). The proof relies on the blow-up argument introduced by Fonseca and Müller.

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
Full Text: DOI

References:

[1] DOI: 10.1007/BF00251230 · Zbl 0616.76004 · doi:10.1007/BF00251230
[2] DOI: 10.1016/0362-546X(91)90177-3 · Zbl 0748.49034 · doi:10.1016/0362-546X(91)90177-3
[3] Gurtin, Some remarks concerning phase transitions in (1983)
[4] DOI: 10.1215/S0012-7094-64-03115-1 · Zbl 0123.09804 · doi:10.1215/S0012-7094-64-03115-1
[5] DOI: 10.1007/BF01760826 · Zbl 0607.49010 · doi:10.1007/BF01760826
[6] DOI: 10.1007/BF01301259 · Zbl 0435.49016 · doi:10.1007/BF01301259
[7] Gurtin, Metastability and Incompletely Posed Problems pp 135– (1987) · doi:10.1007/978-1-4613-8704-6_9
[8] DOI: 10.1007/BFb0066252 · doi:10.1007/BFb0066252
[9] De Giorgi, Rend. Mat. 8 pp 277– (1975)
[10] Dacorogna, Direct Methods in the Calculus of Variations (1989) · Zbl 0703.49001 · doi:10.1007/978-3-642-51440-1
[11] DOI: 10.1007/BF01445167 · Zbl 0695.49003 · doi:10.1007/BF01445167
[12] DOI: 10.1007/978-1-4612-1015-3 · Zbl 0692.46022 · doi:10.1007/978-1-4612-1015-3
[13] Baldo, Ann. Inst. H. Poincaré- Anal. Non Linéaire 7 pp 37– (1990) · Zbl 0702.49009 · doi:10.1016/S0294-1449(16)30304-3
[14] Wulff, Z. Krist. 34 pp 449– (1901)
[15] Attouch, Variational Convergence for Functions and Operators (1984) · Zbl 0561.49012
[16] Taylor, Proc. Sympos. Pure Math. 27 pp 419– (1975) · doi:10.1090/pspum/027.1/0388225
[17] DOI: 10.1016/0022-1236(92)90012-8 · Zbl 0769.49009 · doi:10.1016/0022-1236(92)90012-8
[18] Taylor, Sympos. Math. 14 pp 499– (1974)
[19] Tartar, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium IV pp 136– (1979)
[20] Giusti, Minimal Surfaces and Functions of Bounded Variation (1984) · Zbl 0545.49018 · doi:10.1007/978-1-4684-9486-0
[21] Fonseca, Proc. Roy. Soc. Edinburgh Sect. A 111 pp 89– (1989) · Zbl 0676.49005 · doi:10.1017/S030821050002504X
[22] Fonseca, Proc. Roy. Soc. Edinburgh Sect. A 121 pp 321– (1992) · Zbl 0794.49012 · doi:10.1017/S0308210500027943
[23] Fonseca, Proc. Roy. Soc. Edinburgh Sect. A 119 pp 125– (1991) · Zbl 0752.49019 · doi:10.1017/S0308210500028365
[24] DOI: 10.1007/BF00386367 · Zbl 0788.49039 · doi:10.1007/BF00386367
[25] DOI: 10.1137/0523060 · Zbl 0764.49012 · doi:10.1137/0523060
[26] Fonseca, Proc. Roy. Soc. Edinburgh Sect. A 120 pp 99– (1992) · Zbl 0757.49013 · doi:10.1017/S0308210500015018
[27] DOI: 10.1098/rspa.1991.0009 · Zbl 0725.49017 · doi:10.1098/rspa.1991.0009
[28] Federer, Geometric Measure Theory (1969) · Zbl 0176.00801
[29] Evans, Lecture Notes on Measure Theory and Fine Properties of Functions (1992)
[30] DOI: 10.1007/BF00253122 · Zbl 0647.49021 · doi:10.1007/BF00253122
[31] Stein, Singular Integrals and Differentiability Properties of Functions (1970) · Zbl 0207.13501
[32] Reshetnyak, Siberian Math. J. 9 pp 1039– (1968) · Zbl 0176.44402 · doi:10.1007/BF02196453
[33] Kohn, Proc. Roy. Soc. Edinburgh Sect. A 111 pp 69– (1989) · Zbl 0676.49011 · doi:10.1017/S0308210500025026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.