×

On the Cauchy problem and peakons of a two-component Novikov system. (English) Zbl 1462.35134

Summary: We study a two-component Novikov system, which is integrable and can be viewed as a two-component generalization of the Novikov equation with cubic nonlinearity. The primary goal of this paper is to understand how multi-component equations, nonlinear dispersive terms and other nonlinear terms affect the dispersive dynamics and the structure of the peaked solitons. We establish the local well-posedness of the Cauchy problem in Besov spaces \(B_{p,r}^s\) with \(1\leq p,r\leq+\infty, s > \max\{1+1/p,3/2\}\) and Sobolev spaces \(H^s(\mathbb{R})\) with \(s > 3/2\), and the method is based on the estimates for transport equations and new invariant properties of the system. Furthermore, the blow-up and wave-breaking phenomena of solutions to the Cauchy problem are studied. A blow-up criterion on solutions of the Cauchy problem is demonstrated. In addition, we show that this system admits single-peaked solitons and multi-peaked solitons on the whole line, and the single-peaked solitons on the circle, which are the weak solutions in both senses of the usual weak form and the weak Lax-pair form of the system.

MSC:

35C08 Soliton solutions
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35G55 Initial value problems for systems of nonlinear higher-order PDEs
Full Text: DOI

References:

[1] Beals, R.; Sattinger, D-H; Szmigielski, J., Inverse scattering solutions of the Hunter-Saxton equation, Appl Anal, 78, 255-269 (2001) · Zbl 1020.35092
[2] Camassa, R.; Holm, D-D, An integrable shallow water equation with peaked solitons, Phys Rev Lett, 71, 1661-1664 (1993) · Zbl 0972.35521
[3] Chen, M.; Liu, S-Q; Zhang, Y-J, A two-component generalization of the two-component equation and its solutions, Lett Math Phys, 75, 1-15 (2006) · Zbl 1105.35102
[4] Chou, K-S; Qu, C-Z, Integrable equations arising from motions of plane curves I, Phys D, 162, 9-33 (2002) · Zbl 0987.35139
[5] Constantin, A., Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann Inst Fourier (Grenoble), 50, 321-362 (2000) · Zbl 0944.35062
[6] Constantin, A., The trajectories of particles in Stokes waves, Invent Math, 166, 523-535 (2006) · Zbl 1108.76013
[7] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math, 181, 229-243 (1998) · Zbl 0923.76025
[8] Constantin, A.; Escher, J., Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm Pure Appl Math, 51, 475-504 (1998) · Zbl 0934.35153
[9] Constantin, A.; Escher, J., Global existence and blow-up for a shallow water equation, Ann Sc Norm Super Pisa Cl Sci (5), 26, 303-328 (1998) · Zbl 0918.35005
[10] Constantin, A.; Ivanov, R-I, On an integrable two-component Camassa-Holm shallow water system, Phys Lett A, 372, 7129-7132 (2008) · Zbl 1227.76016
[11] Constantin, A.; Lannes, D., The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch Ration Mech Anal, 192, 165-186 (2009) · Zbl 1169.76010
[12] Constantin, A.; Molinet, L., Orbital stability of solitary waves for a shallow water equation, Phys D, 157, 75-89 (2001) · Zbl 0984.35139
[13] Constantin, A.; Strauss, W., Stability of peakons, Comm Pure Appl Math, 53, 603-610 (2000) · Zbl 1049.35149
[14] Danchin, R., A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14, 953-988 (2001) · Zbl 1161.35329
[15] Danchin, R., A note on well-posedness for Camassa-Holm equation, J Differential Equations, 192, 429-444 (2003) · Zbl 1048.35076
[16] Danchin R. Fourier analysis methods for PDE’s. http://perso.math.u-pem.fr/danchin.raphael/cours/courschine.pdf, 2005
[17] Degasperis, A.; Holm, D-D; Hone, A-N, A new integral equation with peakon solutions, Theoret Math Phys, 133, 1463-1474 (2002)
[18] Deng, S. F.; Guo, B. L.; Wang, T. C., Travelling wave solutions of a generalized Camassa-Holm-Degasperis-Procesi equation, Sci China Math, 54, 555-572 (2011) · Zbl 1364.34066
[19] Escher, J.; Kohlmann, J.; Lenells, J., The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations, J Geom Phys, 61, 436-452 (2011) · Zbl 1210.58007
[20] Fu, Y.; Liu, Y.; Qu, C-Z, Well-posedness and blow-up solution for a modified two-component periodic Camassa-Holm system with peakons, Math Ann, 348, 415-448 (2010) · Zbl 1207.35074
[21] Fu, Y.; Qu, C-Z, Well posedness and blow-up solution for a new coupled Camassa-Holm equation with peakons, J Math Phys, 50, 012906 (2009) · Zbl 1189.35273
[22] Fuchssteiner, B.; Fokas, A-S, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys D, 4, 47-66 (1981) · Zbl 1194.37114
[23] Geng, X-G; Xue, B., An extension of integrable peakon equations with cubic nonlinearity, Nonlinearity, 22, 1847-1856 (2009) · Zbl 1171.37331
[24] Geng, X-G; Xue, B., A three-component generalization of Camassa-Holm equation with N-peakon solutions, Adv Math, 226, 827-839 (2011) · Zbl 1207.35254
[25] Grunert, K.; Holden, H.; Raynaud, X., Global solutions for the two-component Camassa-Holm system, Comm Partial Differential Equations, 37, 2245-2271 (2012) · Zbl 1258.35176
[26] Gui, G-L; Liu, Y., On the global existence and wave breaking criteria for the two-component Camassa-Holm system, J Funct Anal, 258, 4251-4278 (2010) · Zbl 1189.35254
[27] Gui, G-L; Liu, Y.; Olver, P-J, Wave breaking and peakons for a modified Camassa-Holm equation, Comm Math Phys, 319, 731-759 (2013) · Zbl 1263.35186
[28] Himonas, A.; Holliman, C., The Cauchy problem for the Novikov equation, Nonlinearity, 25, 449-479 (2012) · Zbl 1232.35145
[29] Himonas, A.; Mantzavinos, D., The initial value problem for a Novikov system, J Math Phys, 57, 071503 (2016) · Zbl 1342.35068
[30] Holm, D-D; Ivanov, R., Multi-component generalizations of the CH equation: Geometrical aspects, peakons and numerical examples, J Phys A, 43, 492001 (2010) · Zbl 1213.37097
[31] Holm, D-D; Ivanov, R., Two-component CH system: Inverse scattering, peakons and geometry, Inverse Problems, 27, 045013 (2011) · Zbl 1216.35175
[32] Holm, D-D; Náraigh, L-Ó; Tronci, C., Singular solutions of a modified two-component Camassa-Holm equation, Phys Rev E (3), 79, 016601 (2009)
[33] Hone, A-N; Lundmark, H.; Szmigielski, J., Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa-Holm type equation, Dyn Partial Differ Equ, 6, 253-289 (2009) · Zbl 1179.37092
[34] Hone, A-N; Wang, J-P, Integrable peakon equations with cubic nonlinearity, J Phys A, 41, 372002 (2008) · Zbl 1153.35075
[35] Jiang, Z-H; Ni, L-D, Blow-up phenomenon for the integrable Novikov equation, J Math Anal Appl, 385, 551-558 (2012) · Zbl 1228.35066
[36] Johnson, R-S, Camassa-Holm, Korteweg-de Vries and related models for water waves, J Fluid Mech, 455, 63-82 (2002) · Zbl 1037.76006
[37] Kang, J.; Liu, X-C; Olver, P-J, Liouville correspondences between integrable hierarchies, SIGMA Symmetry Integrability Geom Methods Appl, 13, 035 (2017) · Zbl 1366.37133
[38] Kenig, C-E; Ponce, G.; Vega, L., A bilinear estimate with applications to the KdV equation, J Amer Math Soc, 9, 573-603 (1996) · Zbl 0848.35114
[39] Kouranbaeva, S., The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J Math Phys, 40, 857-868 (1999) · Zbl 0958.37060
[40] Lai, S-Y, Global weak solutions to the Novikov equation, J Funct Anal, 265, 520-544 (2013) · Zbl 1283.35112
[41] Li, H-M; Li, Y-Q; Chen, Y., Bi-Hamiltonian structure of multi-component Novikov equation, J Nonlinear Math Phys, 21, 509-520 (2014) · Zbl 1420.37074
[42] Li, N-H; Liu, Q-P, On bi-Hamiltonian structure of two-component Novikov equation, Phys Lett A, 377, 257-261 (2013) · Zbl 1298.37054
[43] Li, Y-A; Olver, P-J, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J Differential Equations, 162, 27-63 (2000) · Zbl 0958.35119
[44] Li, Y. Y.; Qu, C. Z., Symplectic invariants for curves and integrable systems in similarity symplectic geometry, Sci China Math, 58, 1415-1432 (2015) · Zbl 1325.37045
[45] Liu, X-C; Liu, Y.; Olver, P., Orbital stability of peakons for a generalization of the modified Camassa-Holm equation, Nonlinearity, 27, 2297-2319 (2014) · Zbl 1307.35035
[46] Liu, X-C; Liu, Y.; Qu, C-Z, Stability of peakons for the Novikov equation, J Math Pures Appl (9), 101, 172-187 (2014) · Zbl 1295.35065
[47] Lundmark, H.; Szmigielski, J., An inverse spectral problem related to the Geng-Xue two-component peakon equation, Mem Amer Math Soc, 244, 1155 (2016) · Zbl 1375.34030
[48] Lundmark, H.; Szmigielski, J., Dynamics of interlacing peakons (and shockpeakons) in the Geng-Xue equation, J Integr Syst, 2, xyw014 (2017) · Zbl 1403.37081
[49] Novikov, V., Generalizations of the Camassa-Holm equation, J Phys A, 42, 342002 (2009) · Zbl 1181.37100
[50] Olver, P-J; Rosenau, P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys Rev E (3), 53, 1900-1906 (1996)
[51] Qu, C-Z; Liu, X-C; Liu, Y., Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Comm Math Phys, 322, 967-997 (2013) · Zbl 1307.35264
[52] Qu, C-Z; Song, J-F; Yao, R-X, Multi-component integrable systems with peaked solitons and invariant curve flows in certain geometries, SIGMA Symmetry Integrability Geom Methods Appl, 9, 007 (2013) · Zbl 1384.37085
[53] Song, J-F; Qu, C-Z; Qiao, Z-J, A new integrable two-component system with cubic nonlinearity, J Math Phys, 52, 013503 (2011) · Zbl 1314.37051
[54] Tiğlay, F., The periodic Cauchy problem for Novikov’s equation, Int Math Res Not IMRN, 2011, 4633-4648 (2011) · Zbl 1235.35011
[55] Whitham, G-B, Linear and Nonlinear Waves (1980), New York: John Wiley & Sons, New York
[56] Wu, X-L; Yin, Z-Y, Well-posedness and global existence for the Novikov equation, Ann Sc Norm Super Pisa Cl Sci (5), 11, 707-727 (2012) · Zbl 1261.35041
[57] Xia, B-Q; Qiao, Z-J, A new two-component integrable system with peakon solutions, Proc R Soc Lond Ser A Math Phys Eng Sci, 471, 20140750 (2015) · Zbl 1371.35265
[58] Xia, B-Q; Qiao, Z-J; Zhou, R-G, A synthetical two-component model with peakon solutions, Stud Appl Math, 135, 248-276 (2015) · Zbl 1338.35385
[59] Xin, Z-P; Zhang, P., On the weak solutions to a shallow water equation, Comm Pure Appl Math, 53, 1411-1433 (2000) · Zbl 1048.35092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.