×

Well-posedness and blow-up solution for a modified two-component periodic Camassa-Holm system with peakons. (English) Zbl 1207.35074

The Camassa-Holm equation \(u_{t}-u_{xxt}+3uu_{x}=2u_{x}u_{xx}+uu_{xxx}\) has attracted attention of many authors. Here the modified two-component periodic Camassa-Holm system is considered. For this system the authors have established the local well-posedness and low regularity results of solutions and with description of the precise blow-up scenarios of strong solutions. Also several results of blow-up phenomena with certain initial profiles are detail described with the obtaining the exact blow-up rate.

MSC:

35B44 Blow-up in context of PDEs
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35G25 Initial value problems for nonlinear higher-order PDEs
35B10 Periodic solutions to PDEs
Full Text: DOI

References:

[1] Alber M.S., Camassa R., Holm D.D., Marsden J.E.: On the link between umbilic geodesics and soliton solutions of nonlinear PDEs. Proc. R. Soc. Lond. Ser. A 450, 677–692 (1995) · Zbl 0835.35125 · doi:10.1098/rspa.1995.0107
[2] Beals R., Sattinger D.H., Szmigielski J.: Multi-peakons and a theorem of Stieltjes. Inv. Probl. 15, 1–4 (1999) · Zbl 0923.35154 · doi:10.1088/0266-5611/15/1/001
[3] Bressan A., Constantin A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007) · Zbl 1105.76013 · doi:10.1007/s00205-006-0010-z
[4] Bressan A., Constantin A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. 5, 1–27 (2007) · Zbl 1139.35378 · doi:10.1142/S0219530507000857
[5] Bona J.L., Smith R.: The initial value problem for the Korteweg-de Vries equation. Phil. Trans. R. Soc. Lond. A 278, 555–601 (1975) · Zbl 0306.35027 · doi:10.1098/rsta.1975.0035
[6] Camassa R., Holm D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993) · doi:10.1103/PhysRevLett.71.1661
[7] Chen M., Liu S., Zhang Y.: A two-component generalization of the Camassa–Holm equation and its solutions. Lett. Math. Phys. 75, 1–15 (2006) · Zbl 1105.35102 · doi:10.1007/s11005-005-0041-7
[8] Coclite G.M., Karlsen K.H.: On the well-posdeness of the Degasperis–Procesi equation. J. Funct. Anal. 233, 60–91 (2006) · Zbl 1090.35142 · doi:10.1016/j.jfa.2005.07.008
[9] Constantin A.: On the Cauchy problem for the periodic Camassa–Holm equation. J. Differ. Equ. 141, 218–235 (1997) · Zbl 0889.35022 · doi:10.1006/jdeq.1997.3333
[10] Constantin A.: Global existence of solutions and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000) · Zbl 0944.35062
[11] Constantin A.: On the blow-up of solutions of a periodic shallow water equation. J. Nonlinear Sci. 10, 391–399 (2000) · Zbl 0960.35083 · doi:10.1007/s003329910017
[12] Constantin A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006) · Zbl 1108.76013 · doi:10.1007/s00222-006-0002-5
[13] Constantin A., Escher J.: On the structure of a family of quasilinear equations arising in shallow water theory. Math. Ann. 312, 403–416 (1998) · Zbl 0923.76028 · doi:10.1007/s002080050228
[14] Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998) · Zbl 0923.76025 · doi:10.1007/BF02392586
[15] Constantin A., Escher J.: Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Commun Pure Appl. Math. 51, 475–504 (1998) · Zbl 0934.35153 · doi:10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
[16] Constantin A., Escher J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000) · Zbl 0954.35136 · doi:10.1007/PL00004793
[17] Constantin A., Escher J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007) · Zbl 1126.76012 · doi:10.1090/S0273-0979-07-01159-7
[18] Constantin A., Ivanov R.: On the integrable two-component Camassa–Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008) · Zbl 1227.76016 · doi:10.1016/j.physleta.2008.10.050
[19] Constantin A., Kolev B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787–804 (2003) · Zbl 1037.37032 · doi:10.1007/s00014-003-0785-6
[20] Constantin A., Johnson R.S.: Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis. Fluid Dyn. Res. 40, 175–211 (2008) · Zbl 1135.76007 · doi:10.1016/j.fluiddyn.2007.06.004
[21] Constantin A., Lannes D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009) · Zbl 1169.76010 · doi:10.1007/s00205-008-0128-2
[22] Constantin A., McKean H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999) · Zbl 0940.35177 · doi:10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
[23] Constantin A., Strauss W.A.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000) · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[24] Degasperis, A., Procesi, M.: Asymptotic integrability. Symmetry and Perturbation Theory (Rome, 1998), vol. 23. World Scientific Publishing, River Edge (1999) · Zbl 0963.35167
[25] Escher J., Lechtenfeld O., Yin Z.: Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation. Discrete Contin. Dyn. Syst. 19, 493–513 (2007) · Zbl 1149.35307
[26] Escher J., Liu Y., Yin Z.: Shock waves and blow-up phenomena for the periodic Degasperis–Procesi equation. Indiana Univ. Math. J. 56, 87–117 (2007) · Zbl 1124.35041 · doi:10.1512/iumj.2007.56.3040
[27] Fu Y., Qu C.Z.: Well posedness and blow-up solution for a new coupled Camassa–Holm equations with peakons. J. Math. Phys. 50, 012906 (2009) · Zbl 1189.35273 · doi:10.1063/1.3064810
[28] Fuchssteiner B., Fokas A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D 4, 47–66 (1981/1982) · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[29] Holden H., Raynaud X.: Periodic conservative solutions of the Camassa–Holm equation. Ann. Inst. Fourier 58, 945–988 (2008) · Zbl 1158.35079
[30] Holm D.D., Náraigh L.Ó., Tronci C.: Singular solutions of a modified two-component Camassa–Holm equation. Phys. Rev. E 79, 016601 (2009) · doi:10.1103/PhysRevE.79.016601
[31] Holm D.D., Marsden J.E., Ratiu T.S.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998) · Zbl 0951.37020 · doi:10.1006/aima.1998.1721
[32] Iorio R.J., de Magãlhaes Iorio V.: Fourier Analysis and Partial Differential Equations. Cambridge University Press, Cambridge (2001) · Zbl 0970.35001
[33] Johnson R.S.: Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002) · Zbl 1037.76006 · doi:10.1017/S0022112001007224
[34] Johnson R.S.: The Camassa–Holm equation for water waves moving over a shear flow. Fluid Dyn. Res. 33, 97–111 (2003) · Zbl 1032.76519 · doi:10.1016/S0169-5983(03)00036-4
[35] Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations. Lecture Notes in Math., vol. 448, pp. 25–70. Springer, Berlin (1975)
[36] Kenig C., Ponce G., Vega L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527–620 (1993) · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[37] Kolev B.: Poisson brackets in hydrodynamics. Discrete Contin. Dyn. Syst. 19, 555–574 (2007) · Zbl 1139.53040
[38] Kouranbaeva S.: The Camassa–Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40, 857–868 (1999) · Zbl 0958.37060 · doi:10.1063/1.532690
[39] Lakshmanan, M.: Integrable nonlinear wave equations and possible connections to tsunami dynamics. In: Kundu, A. (ed.) Tsunami and Nonliner Waves, pp. 31–49. Springer, Berlin (2007) · Zbl 1310.76044
[40] Lenells J.: Stability of periodic peakons. Int. Math. Res. Not. 10, 485–499 (2004) · Zbl 1075.35052 · doi:10.1155/S1073792804132431
[41] Li Y., Olver P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000) · Zbl 0958.35119 · doi:10.1006/jdeq.1999.3683
[42] Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Gauthier-Villars, Paris (1969)
[43] Liu Y., Yin Z.: Global existence and blow-up phenomena for the Degasperis–Procesi equation. Commun. Math. Phys. 267, 801–820 (2006) · Zbl 1131.35074 · doi:10.1007/s00220-006-0082-5
[44] Mckean H.P.: Breakdown of a shallow water equation. Asian J. Math. 2, 867–874 (1998) · Zbl 0959.35140
[45] Misiolek G.: Classical solutions of the periodic Camassa–Holm equation. Geom. Funct. Anal. 12, 1080–1104 (2002) · Zbl 1158.37311 · doi:10.1007/PL00012648
[46] Shabat, A., Martínez Alonso, L.: On the prolongation of a hierarchy of hydrodynamic chains. In: Proceedings of the NATO advanced research workshop, Cadiz, Spain 2002, NATO Science Series, pp. 263–280. Kluwer Academic Publishers, Dordrecht (2004) · Zbl 1061.35099
[47] Segur H.: Waves in shallow water, with emphasis on the tsunami of 2004. In: Kundu, A. (eds) Tsunami and Nonlinear Waves, pp. 3–29. Springer, Berlin (2007) · Zbl 1310.76035
[48] Tao, T.: Low-regularity global solutions to nonlinear dispersive equations. Surveys in Analysis and Operator Theory, Canberra, 2001. In: Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 40, pp. 19–48. Austral. Nat. Univ., Canberra (2002)
[49] Toland J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996) · Zbl 0897.35067
[50] Wahlén E.: On the blow-up of solutions to the periodic Camassa–Holm equation. NoDEA Nonlinear Differ. Equ. Appl. 13, 643–653 (2007) · Zbl 1171.35101 · doi:10.1007/s00030-006-4028-6
[51] Walter W.: Differential and Integral Inequalities. Springer, New York (1970) · Zbl 0252.35005
[52] Whitham G.B.: Linear and Nolinear Waves. John Wiley & Sons, New York (1974) · Zbl 0373.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.