×

Symplectic invariants for curves and integrable systems in similarity symplectic geometry. (English) Zbl 1325.37045

Summary: In this paper, similarity symplectic geometry for curves is proposed and studied. Explicit expressions of the symplectic invariants, Frenet frame and Frenet formulae for curves in similarity symplectic geometry are obtained by using the equivariant moving frame method. The relationships between the Euclidean symplectic invariants, Frenet frame, Frenet formulae and the similarity symplectic invariants, Frenet frame, Frenet formulae for curves are established. Invariant curve flows in four-dimensional similarity symplectic geometry are also studied. It is shown that certain intrinsic invariant curve flows in four-dimensional similarity symplectic geometry are related to the integrable Burgers and matrix Burgers equations.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry
53A55 Differential invariants (local theory), geometric objects
Full Text: DOI

References:

[1] Anco S C. Hamiltonian flows of curves in G/SO(N) and vector soliton equations of mKdV and sine-Gordon type. SIGMA, 2006, 2: 044, 17pp · Zbl 1102.37042
[2] Anco S C. Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations. J Phys A, 2006, 39: 2043-2072 · Zbl 1085.37049 · doi:10.1088/0305-4470/39/9/005
[3] Anco S C. Group-invariant soliton equations and bi-Hamiltonian geometric curve flows in Riemannian symmetric spaces. J Geom Phys, 2008, 58: 1-37 · Zbl 1134.53027 · doi:10.1016/j.geomphys.2007.09.005
[4] Anco S C, Asadi E. Symplectically-invariant soliton equations from non-stretching geometric curve flows. J Phys A, 2012, 45: 475207 · Zbl 1267.37068 · doi:10.1088/1751-8113/45/47/475207
[5] Anco S C, Asadi E. Quaternionic soliton equations from Hamiltonian curve flows in ℍℙn. J Phys A, 2009, 42: 485201, 25pp · Zbl 1208.37039 · doi:10.1088/1751-8113/42/48/485201
[6] Asadi E, Sanders J A. Integrable systems in symplectic geometry. Glasg Math J, 2009, 51: 5-23 · Zbl 1166.37025 · doi:10.1017/S0017089508004746
[7] Barbosa M S, de Sousa B. Differential invariants for symplectic Lie algebras realized by boson operators. J Phys A, 2004, 37: 4797-4812 · Zbl 1058.81033 · doi:10.1088/0305-4470/37/17/010
[8] Bryant R L. An Introduction to Lie Groups and Symplectic Geometry. Park City: Lectures at the Regional Geometry Institute, 1991
[9] Calini A, Ivey T, Marí Beffa G. Remarks on KdV-type flows on star-shaped curves. Physica D, 2009, 238: 788-797 · Zbl 1218.37102 · doi:10.1016/j.physd.2009.01.007
[10] Chern S S, Wang H C. Differential geometry in symplectic space. Sci Rep Nat Tsing Hua Univ, 1947, 4: 453-477
[11] Chou K S, Qu C Z. Integrable equations arising from motions of plane curves. Physica D, 2002, 162: 9-33 · Zbl 0987.35139 · doi:10.1016/S0167-2789(01)00364-5
[12] Chou K S, Qu C Z. Integrable motions of space curves in affine geometry. Chaos Solitons Fractals, 2002, 14: 29-44 · Zbl 1014.37047 · doi:10.1016/S0960-0779(01)00179-5
[13] Chou K S, Qu C Z. Integrable equations arising from motions of plane curves II. J Nonlinear Sci, 2003, 13: 487-517 · Zbl 1045.35063 · doi:10.1007/s00332-003-0570-0
[14] Chou K S, Qu C Z. Motions of curves in similarity geometries and Burgers-mKdV hierarchies. Chaos Solitons Fractals, 2004, 19: 47-53 · Zbl 1069.37057 · doi:10.1016/S0960-0779(03)00060-2
[15] Ding Q, He Z Z. The noncommutative KdV equation and its para-Kähler structure. Sci China Math, 2014, 57: 1505-1516 · Zbl 1302.37045 · doi:10.1007/s11425-013-4762-2
[16] Ding Q, Zhu Z N. A geometric characterization of the nonlinear Schrödinger equation and its applications. Sci China Ser A, 2002, 45: 1225-1237 · Zbl 1099.37055 · doi:10.1007/BF02872336
[17] Doliwa A, Santini P M. An elementary geometric characterization of the integrable motions of a curve. Phys Lett A, 1994, 85: 373-384 · Zbl 0941.37532 · doi:10.1016/0375-9601(94)90170-8
[18] Fels M, Olver P J. Moving coframes, I: A practical algorithm. Acta Appl Math, 1998, 51: 161-213 · Zbl 0937.53012 · doi:10.1023/A:1005878210297
[19] Fels M, Olver P J. Moving coframes, II: Regularization and theoretical foundations. Acta Appl Math, 1999, 55: 127-208 · Zbl 0937.53013 · doi:10.1023/A:1006195823000
[20] Fujioka, A.; Inoguchi, J., Deformations of surfaces preserving conformal or similarity invariants, No. 252, 53-67 (2007), Boston · Zbl 1123.53009 · doi:10.1007/978-0-8176-4530-4_4
[21] Fujioka A, Kurose T. Motions of curves in the complex hyperbola and the Burgers hierarchy. Osaka J Math, 2008, 45: 1057-1065 · Zbl 1175.35122
[22] Goldstein R E, Petrich D M. The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. Phys Rev Lett, 1991, 67: 3203-3206 · Zbl 0990.37519 · doi:10.1103/PhysRevLett.67.3203
[23] Green M L. The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces. Duke Math J, 1978, 45: 735-779 · Zbl 0414.53039 · doi:10.1215/S0012-7094-78-04535-0
[24] Griffiths P A. On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry. Duke Math J, 1974, 41: 775-814 · Zbl 0294.53034 · doi:10.1215/S0012-7094-74-04180-5
[25] Gu C H, Hu H S. On the determination of nonlinear partial differential equations admitting integrable systems. Sci China Ser A, 1986, 29: 704-719 · Zbl 0605.35012
[26] Gui G L, Liu Y, Olver P J, et al. Wave-breaking and peakons for a modified Camassa-Holm equation. Comm Math Phys, 2013, 319: 731-759 · Zbl 1263.35186 · doi:10.1007/s00220-012-1566-0
[27] Hasimoto H. A soliton on a vortex filament. J Fluid Mech, 1972, 51: 477-485 · Zbl 0237.76010 · doi:10.1017/S0022112072002307
[28] Ivey T. Integrable geometric evolution equations for curves. Commun Contemp Math, 2001, 285: 71-84 · Zbl 1013.53044
[29] Kamran N, Olver P J, Tenenblat K. Local symplectic invariants for curves. Commun Contemp Math, 2009, 11: 165-183 · Zbl 1176.53032 · doi:10.1142/S0219199709003326
[30] Langer J, Perline R. Poisson geometry of the filament equation. J Nonlinear Sci, 1991, 1: 71-93 · Zbl 0795.35115 · doi:10.1007/BF01209148
[31] Li Y S. Some algebraic properties of C-interable nonlinear equations, I: Burgers equation and Calogero equation. Sci China Ser A, 1990, 33: 513-520 · Zbl 0712.35087
[32] Li Y Y, Qu C Z, Shu S C. Integrable motions of curves in projective geometries. J Geom Phys, 2010, 60: 972-985 · Zbl 1192.53011 · doi:10.1016/j.geomphys.2010.03.001
[33] Marí Beffa G. Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces. Proc Amer Math Soc, 2006, 134: 779-791 · Zbl 1083.37053 · doi:10.1090/S0002-9939-05-07998-0
[34] Marí Beffa G. On completely integrable geometric evolutions of curves of Lagrangian planes. Proc Roy Soc Edinburgh Sect A, 2007, 137: 111-131 · Zbl 1130.37032 · doi:10.1017/S0308210505000600
[35] Marí Beffa G. Geometric realizations of bi-Hamiltonian completely integrable systems. SIGMA, 2008, 4: 034, 23pp · Zbl 1157.37336
[36] Marí Beffa G. Hamiltonian evolution of curves in classical affine geometries. Physica D, 2009, 238: 100-115 · Zbl 1163.37023 · doi:10.1016/j.physd.2008.08.009
[37] Marí Beffa G. Bi-Hamiltonian flows and their realizations as curves in real semisimple homogeneous manifolds. Pacific J Math, 2010, 247: 163-188 · Zbl 1213.37096 · doi:10.2140/pjm.2010.247.163
[38] Marí Beffa G, Olver P J. Poisson structures for geometric curve flows in semi-simple homogeneous spaces. Regul Chaotic Dyn, 2010, 15: 532-550 · Zbl 1229.22018 · doi:10.1134/S156035471004009X
[39] Marí Beffa G, Sanders J A, Wang J P. Integrable systems in three-dimensional Riemannian geometry. J Nonlinear Sci, 2002, 12: 143-167 · Zbl 1140.37361 · doi:10.1007/s00332-001-0472-y
[40] Musso E. Motion of curves in the projective plane introducing the Kaup-Kuperschmidt hierarchy. SIGMA, 2012, 8: 030, 20pp · Zbl 1246.53012
[41] Nakayama K, Segur H, Wadati M. Integrability and the motion of curves. Phys Rev Lett, 1992, 69: 2603-2606 · Zbl 0968.53500 · doi:10.1103/PhysRevLett.69.2603
[42] Olver P J. Equivalence, Invariants and Symmetry. Cambridge: Cambridge University Press, 1995 · Zbl 0837.58001 · doi:10.1017/CBO9780511609565
[43] Olver P J. Invariant submanifold flows. J Phys A, 2009, 41: 344017, 22pp · Zbl 1146.53040 · doi:10.1088/1751-8113/41/34/344017
[44] Olver P J, Sapiro G, Tannenbaum A. Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach, Geometry Driven Diffusion in Computer Vision. Dordrecht: Kluwer, 1994, 205-306 · Zbl 0832.68111
[45] Olver P J, Sokolov V V. Integrable evolution equations on associative algebras. Comm Math Phys, 1998, 193: 245-268 · Zbl 0908.35124 · doi:10.1007/s002200050328
[46] Pinkall U. Hamiltonian flows on the space of star-shaped curves. Result Math, 1995, 27: 328-332 · Zbl 0835.35128 · doi:10.1007/BF03322836
[47] Qu C Z, Song J F, Yao R X. Multi-component integrable systems with peaked solitons and invariant curve flows in certain geometries. SIGMA, 2013, 9: 007, 19pp · Zbl 1384.37085
[48] Sanders J A, Wang J P. Integrable systems in n-dimensional Riemannian geometry. Moscow Math J, 2003, 3: 1369-1393 · Zbl 1050.37035
[49] de Silva A C. Lectures on Symplectic Geometry. New York: Springer-Verlag, 2006
[50] Song J F, Qu C Z. Integrable systems and invariant curve flows in centro-equiaffine symplectic geometry. Physica D, 2012, 241: 393-402 · Zbl 1247.37064 · doi:10.1016/j.physd.2011.10.010
[51] Terng C L, Thorbergsson G. Completely integrable curve flows on adjoint orbits. Results Math, 2001, 40: 286-309 · Zbl 1023.37041 · doi:10.1007/BF03322713
[52] Valiquette F. Geometric affine symplectic curve flows in ℝ4. Differ Geom Appl, 2012, 30: 631-641 · Zbl 1271.37043 · doi:10.1016/j.difgeo.2012.09.003
[53] Wang J P. Generalized Hasimoto Transformation and Vector Sine-Gordon Equation, Symmetry and Perturbation Theory. River Edge: World Sci Publ, 2002, 276-283
[54] Wo W F, Qu C Z. Integrable motions of curves in S1 × ℝ. J Geom Phys, 2007, 57: 1733-1755 · Zbl 1162.53042 · doi:10.1016/j.geomphys.2007.02.006
[55] Xu X. Differential invariants of classical groups. Duke Math J, 1998, 94: 543-572 · Zbl 0942.58036 · doi:10.1215/S0012-7094-98-09422-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.