×

Bi-Hamiltonian structure of multi-component Novikov equation. (English) Zbl 1420.37074

Summary: In this paper, we present the multi-component Novikov equation and derive it’s bi-Hamiltonian structure.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Beals, R.; Sattinger, D. H.; Szmigielski, J., Multi-peakons and a theorem of Stieltjes, Inverse Problems, 15, L1-L4 (1999) · Zbl 0923.35154
[2] Beals, R.; Sattinger, D. H.; Szmigielski, J., Multipeakons and the Classical Moment Problem, Adv. Math., 154, 229-257 (2000) · Zbl 0968.35008
[3] Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521
[4] Camassa, R.; Holm, D. D.; Hyman, J. M., A new integrable shallow water equation, Adv. Appl. Mech., 31, 1-31 (1994) · Zbl 0808.76011
[5] Constantin, A., On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. London A, 457, 953-970 (2001) · Zbl 0999.35065
[6] Constantin, A.; Gerdjikov, V. S.; Ivanov, R. I., Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22, 2197-2207 (2006) · Zbl 1105.37044
[7] Degasperis, A.; Procesi, M.; Degasperis, A.; Gaeta, G., Asymptotic Integrability Symmetry and Perturbation Theory (1999), World Scientific: World Scientific, Singapore · Zbl 0963.35167
[8] Degasperis, A.; Holm, D. D.; Hone, A. N. W., A new integrable equation with peakon solitons, Theor. Math. Phys., 133, 1463-1474 (2002)
[9] Fokas, A. S.; Liu, Q. M., Asymptotic integrability of water waves, Phys. Rev. Lett., 77, 2347-2351 (1996) · Zbl 0982.76511
[10] Fuchessteiner, B., Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Physica D, 95, 229-243 (1996) · Zbl 0900.35345
[11] Geng, X. G.; Xue, B., An extension of integrable peakon equations with cubic nonlinearity, Nonlinearity, 22, 1847-1856 (2009) · Zbl 1171.37331
[12] Hone, A. N. W.; Wang, J. P., Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor., 41, 372002 (2008) · Zbl 1153.35075
[13] Holm, D. D.; Ivanov, R. I., Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples, J. Phys. A: Math. Theor., 43, 492001 (2010) · Zbl 1213.37097
[14] Ionescu-Kruse, D., Variational derivation of the Camassa-Holm shallow water equation, J. Nonlinear Math. Phys., 14, 311-320 (2007) · Zbl 1157.76005
[15] Kolev, B., Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations, Philos. Trans. R. Soc. London A, 365, 2333-2357 (2007) · Zbl 1152.37344
[16] Lenells, J., A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys., 11, 151-163 (2004) · Zbl 1067.35076
[17] Lenells, J., The scattering approach for the Camassa-Holm equation, J. Nonlinear Math. Phys., 9, 389-393 (2002) · Zbl 1014.35082
[18] Li, Y. S.; Zhang, J. E., The multi-soliton solution of the Camassa-Holm equation, Proc. R. Soc. Lond. A, 460, 2617-2627 (2004) · Zbl 1068.35109
[19] Li, N. H.; Liu, Q. P., On bi-Hamiltonian structure of two-component Novikov equation, Phys. Lett. A, 377, 257-261 (2013) · Zbl 1298.37054
[20] Novikov, V. S., Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42, 342002 (2009) · Zbl 1181.37100
[21] Olver, P. J., Applications of Lie Groups to Differential Equations (1993), Springer: Springer, Berlin · Zbl 0785.58003
[22] Qu, C. Z.; Song, J. F.; Yao, R. X., Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries, SIGMA, 9, 001 (2013) · Zbl 1384.37085
[23] Xia, B. Q.; Qiao, Z. J., Integrable multi-component Camassa-Holm system
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.