×

\(R^2\) corrected \(\mathrm{AdS}_2\) holography. (English) Zbl 1461.83046

Summary: We approach the problem of constructing an explicit holographic dictionary for the \(\mathrm{AdS}_2/ \mathrm{CFT}_1\) correspondence in the context of higher derivative gravitational actions in \(\mathrm{AdS}_2\) space-times. These actions are obtained by an \(S^2\) reduction of four-dimensional \(\mathcal{N} = 2\) Wilsonian effective actions with Weyl squared interactions restricted to constant scalar backgrounds. BPS black hole near-horizon space-times fall into this class of backgrounds, and by identifying the boundary operators dual to the bulk fields, we explicitly show how the Wald entropy of the BPS black hole is holographically encoded in the anomalous transformation of the operator dual to a composite bulk field. Additionally, using a 2d/3d lift, we show that the CFT holographically dual to \(\mathrm{AdS}_2\) is naturally embedded in the chiral half of the \(\mathrm{CFT}_2\) dual to the \(\mathrm{AdS}_3\) space-time, and we identify the specific operator in \(\mathrm{CFT}_1\) that encodes the chiral central charge of the \(\mathrm{CFT}_2\).

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83E05 Geometrodynamics and the holographic principle
83C45 Quantization of the gravitational field
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)

References:

[1] Maldacena, JM, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[2] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[3] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[4] Strominger, A., AdS_2quantum gravity and string theory, JHEP, 01, 007 (1999) · Zbl 0965.81097 · doi:10.1088/1126-6708/1999/01/007
[5] Maldacena, JM; Michelson, J.; Strominger, A., Anti-de Sitter fragmentation, JHEP, 02, 011 (1999) · Zbl 0956.83052 · doi:10.1088/1126-6708/1999/02/011
[6] Almheiri, A.; Polchinski, J., Models of AdS_2backreaction and holography, JHEP, 11, 014 (2015) · Zbl 1388.83079 · doi:10.1007/JHEP11(2015)014
[7] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[8] G. Sárosi, AdS_2holography and the SYK model, PoSModave2017 (2018) 001 [arXiv:1711.08482] [INSPIRE].
[9] Grumiller, D.; McNees, R.; Salzer, J.; Valcárcel, C.; Vassilevich, D., Menagerie of AdS_2boundary conditions, JHEP, 10, 203 (2017) · Zbl 1383.83114 · doi:10.1007/JHEP10(2017)203
[10] Castro, A.; Larsen, F.; Papadimitriou, I., 5D rotating black holes and the nAdS_2/nCFT_1correspondence, JHEP, 10, 042 (2018) · Zbl 1402.83073 · doi:10.1007/JHEP10(2018)042
[11] Larsen, F.; Zeng, Y., Black hole spectroscopy and AdS_2holography, JHEP, 04, 164 (2019) · Zbl 1415.83019 · doi:10.1007/JHEP04(2019)164
[12] Hong, J.; Larsen, F.; Liu, JT, The scales of black holes with nAdS_2geometry, JHEP, 10, 260 (2019) · Zbl 1427.83051 · doi:10.1007/JHEP10(2019)260
[13] Charles, AM; Larsen, F., A one-loop test of the near-AdS_2/near-CFT_1correspondence, JHEP, 07, 186 (2020) · Zbl 1451.83066 · doi:10.1007/JHEP07(2020)186
[14] Castro, A.; Mühlmann, B., Gravitational anomalies in nAdS_2/nCFT_1, Class. Quant. Grav., 37, 145017 (2020) · Zbl 1478.83134 · doi:10.1088/1361-6382/ab8bbb
[15] Castro, A.; Grumiller, D.; Larsen, F.; McNees, R., Holographic Description of AdS_2Black Holes, JHEP, 11, 052 (2008) · doi:10.1088/1126-6708/2008/11/052
[16] A. Castro and W. Song, Comments on AdS_2Gravity, arXiv:1411.1948 [INSPIRE].
[17] Grumiller, D.; Salzer, J.; Vassilevich, D., AdS_2holography is (non-)trivial for (non-)constant dilaton, JHEP, 12, 015 (2015) · Zbl 1388.83554
[18] M. Cvetič and I. Papadimitriou, AdS_2holographic dictionary, JHEP12 (2016) 008 [Erratum ibid.01 (2017) 120] [arXiv:1608.07018] [INSPIRE]. · Zbl 1390.83186
[19] Skenderis, K., Lecture notes on holographic renormalization, Class. Quant. Grav., 19, 5849 (2002) · Zbl 1044.83009 · doi:10.1088/0264-9381/19/22/306
[20] Gaiotto, D.; Strominger, A.; Yin, X., New connections between 4-D and 5-D black holes, JHEP, 02, 024 (2006) · doi:10.1088/1126-6708/2006/02/024
[21] Castro, A.; Davis, JL; Kraus, P.; Larsen, F., 5D attractors with higher derivatives, JHEP, 04, 091 (2007) · doi:10.1088/1126-6708/2007/04/091
[22] Banerjee, N.; de Wit, B.; Katmadas, S., The Off-Shell 4D/5D Connection, JHEP, 03, 061 (2012) · Zbl 1309.81143 · doi:10.1007/JHEP03(2012)061
[23] Strominger, A., Black hole entropy from near horizon microstates, JHEP, 02, 009 (1998) · Zbl 0955.83010 · doi:10.1088/1126-6708/1998/02/009
[24] Balasubramanian, V.; de Boer, J.; Sheikh-Jabbari, MM; Simon, J., What is a chiral 2d CFT? And what does it have to do with extremal black holes?, JHEP, 02, 017 (2010) · Zbl 1270.81149 · doi:10.1007/JHEP02(2010)017
[25] Hartman, T.; Strominger, A., Central Charge for AdS_2Quantum Gravity, JHEP, 04, 026 (2009) · doi:10.1088/1126-6708/2009/04/026
[26] Faddeev, LD; Jackiw, R., Hamiltonian Reduction of Unconstrained and Constrained Systems, Phys. Rev. Lett., 60, 1692 (1988) · Zbl 1129.81328 · doi:10.1103/PhysRevLett.60.1692
[27] R. Jackiw, (Constrained) quantization without tears, in 2nd Workshop on Constraint Theory and Quantization Methods, (1993) [hep-th/9306075] [INSPIRE].
[28] Cardoso, GL; de Wit, B.; Kappeli, J.; Mohaupt, T., Stationary BPS solutions in N = 2 supergravity with R^2interactions, JHEP, 12, 019 (2000) · Zbl 0990.83567 · doi:10.1088/1126-6708/2000/12/019
[29] Bergshoeff, E.; de Roo, M.; de Wit, B., Extended Conformal Supergravity, Nucl. Phys. B, 182, 173 (1981) · doi:10.1016/0550-3213(81)90465-X
[30] de Wit, B., N = 2 electric-magnetic duality in a chiral background, Nucl. Phys. B Proc. Suppl., 49, 191 (1996) · Zbl 0957.81693 · doi:10.1016/0920-5632(96)00335-0
[31] Cardoso, GL; de Wit, B.; Mahapatra, S., Black hole entropy functions and attractor equations, JHEP, 03, 085 (2007) · doi:10.1088/1126-6708/2007/03/085
[32] Sen, A., Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP, 09, 038 (2005) · doi:10.1088/1126-6708/2005/09/038
[33] Sen, A., State Operator Correspondence and Entanglement in AdS_2/CFT_1, Entropy, 13, 1305 (2011) · Zbl 1296.83046 · doi:10.3390/e13071305
[34] Mohaupt, T.; Vaughan, O., The Hesse potential, the c-map and black hole solutions, JHEP, 07, 163 (2012) · Zbl 1397.83078 · doi:10.1007/JHEP07(2012)163
[35] Cardoso, GL; Mohaupt, T., Special geometry, Hessian structures and applications, Phys. Rept., 855, 1 (2020) · Zbl 1475.83060 · doi:10.1016/j.physrep.2020.02.002
[36] Papadimitriou, I., Holographic renormalization as a canonical transformation, JHEP, 11, 014 (2010) · Zbl 1294.81227 · doi:10.1007/JHEP11(2010)014
[37] Harlow, D.; Wu, J-Q, Covariant phase space with boundaries, JHEP, 10, 146 (2020) · Zbl 1461.83007 · doi:10.1007/JHEP10(2020)146
[38] E. Dyer and K. Hinterbichler, Boundary Terms, Variational Principles and Higher Derivative Modified Gravity, Phys. Rev. D79 (2009) 024028 [arXiv:0809.4033] [INSPIRE]. · Zbl 1222.83142
[39] Ferrara, S.; Kallosh, R., Supersymmetry and attractors, Phys. Rev. D, 54, 1514 (1996) · Zbl 1171.83329 · doi:10.1103/PhysRevD.54.1514
[40] Ferrara, S.; Kallosh, R., Universality of supersymmetric attractors, Phys. Rev. D, 54, 1525 (1996) · Zbl 1171.83330 · doi:10.1103/PhysRevD.54.1525
[41] Cardoso, GL; de Wit, B.; Mohaupt, T., Corrections to macroscopic supersymmetric black hole entropy, Phys. Lett. B, 451, 309 (1999) · Zbl 1058.83516 · doi:10.1016/S0370-2693(99)00227-0
[42] Papadimitriou, I.; Skenderis, K., Thermodynamics of asymptotically locally AdS spacetimes, JHEP, 08, 004 (2005) · doi:10.1088/1126-6708/2005/08/004
[43] Brown, JD; Henneaux, M., Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys., 104, 207 (1986) · Zbl 0584.53039 · doi:10.1007/BF01211590
[44] R. Penrose and W. Rindler, Spinors And Space-Time. Vol. 2: Spinor And Twistor Methods In Space-Time Geometry, Cambridge Monographs on Mathematical Physics, Cambridge University Press ((1988)), [DOI] [INSPIRE].
[45] Imbimbo, C.; Schwimmer, A.; Theisen, S.; Yankielowicz, S., Diffeomorphisms and holographic anomalies, Class. Quant. Grav., 17, 1129 (2000) · Zbl 0952.81052 · doi:10.1088/0264-9381/17/5/322
[46] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D48 (1993) R3427 [gr-qc/9307038] [INSPIRE]. · Zbl 0942.83512
[47] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D50 (1994) 846 [gr-qc/9403028] [INSPIRE].
[48] T. Jacobson, G. Kang and R.C. Myers, Black hole entropy in higher curvature gravity, in 16th Annual MRST (Montreal-Rochester-Syracuse-Toronto) Meeting on High-energy Physics: What Next? Exploring the Future of High-energy Physics, (1994) [gr-qc/9502009] [INSPIRE]. · Zbl 0862.53068
[49] V. Iyer and R.M. Wald, A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D52 (1995) 4430 [gr-qc/9503052] [INSPIRE].
[50] Dirac, PAM, Generalized Hamiltonian dynamics, Can. J. Math., 2, 129 (1950) · Zbl 0036.14104 · doi:10.4153/CJM-1950-012-1
[51] Anderson, JL; Bergmann, PG, Constraints in covariant field theories, Phys. Rev., 83, 1018 (1951) · Zbl 0045.45505 · doi:10.1103/PhysRev.83.1018
[52] Bergmann, PG; Goldberg, I., Dirac bracket transformations in phase space, Phys. Rev., 98, 531 (1955) · Zbl 0065.22803 · doi:10.1103/PhysRev.98.531
[53] Barcelos-Neto, J.; Wotzasek, C., Faddeev-Jackiw quantization and constraints, Int. J. Mod. Phys. A, 7, 4981 (1992) · Zbl 0972.81582 · doi:10.1142/S0217751X9200226X
[54] Callan, CG Jr; Giddings, SB; Harvey, JA; Strominger, A., Evanescent black holes, Phys. Rev. D, 45, R1005 (1992) · doi:10.1103/PhysRevD.45.R1005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.