×

Covariant phase space with boundaries. (English) Zbl 1461.83007

This paper generalizes the approach of Iyer, Lee, Wald, and Zoupas (see [R. M. Wald and A. Zoupas, Phys. Rev. D (3) 61, No. 8, Article ID 084027, 16 p. (2000; Zbl 1136.83317)] and references therein) to understand the Hamiltonian dynamics of Lagrangian field theories without breaking covariance, to the case in the presence of boundaries. Examples are studied. It is also shown that the Poisson bracket on covariant phase space coincides with the Peirels brackets. The developments may remove obstacles to the application of the framework for the computation of the entropy of dynamical black holes.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C57 Black holes
70H40 Relativistic dynamics for problems in Hamiltonian and Lagrangian mechanics
81P17 Quantum entropies
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)

Citations:

Zbl 1136.83317

References:

[1] Witten, E., Interacting Field Theory of Open Superstrings, Nucl. Phys. B, 276, 291 (1986) · doi:10.1016/0550-3213(86)90298-1
[2] G.J. Zuckerman, ACTION principles and global geometry, in Mathematical Aspects of String Theory, World Scientific (1987) [Conf. Proc. C8607214 (1986) 259] [INSPIRE]. · Zbl 0669.58014
[3] C. Crnkovic and E. Witten, Covariant description of canonical formalism in geometrical theories, in Three hundred years of gravitation, pp. 676-684, Cambridge University Press (1987) [INSPIRE]. · Zbl 0966.81533
[4] Crnkovic, C., Symplectic Geometry of the Covariant Phase Space, Superstrings and Superspace, Class. Quant. Grav., 5, 1557 (1988) · Zbl 0665.53052 · doi:10.1088/0264-9381/5/12/008
[5] Lee, J.; Wald, RM, Local symmetries and constraints, J. Math. Phys., 31, 725 (1990) · Zbl 0704.70013 · doi:10.1063/1.528801
[6] Wald, RM, Black hole entropy is the Noether charge, Phys. Rev. D, 48, 3427 (1993) · Zbl 0942.83512 · doi:10.1103/PhysRevD.48.R3427
[7] Iyer, V.; Wald, RM, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D, 50, 846 (1994) · doi:10.1103/PhysRevD.50.846
[8] Iyer, V.; Wald, RM, A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D, 52, 4430 (1995) · doi:10.1103/PhysRevD.52.4430
[9] Wald, RM; Zoupas, A., A General definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D, 61 (2000) · Zbl 1136.83317 · doi:10.1103/PhysRevD.61.084027
[10] Khavkine, I., Covariant phase space, constraints, gauge and the Peierls formula, Int. J. Mod. Phys. A, 29 (2014) · Zbl 1284.70003 · doi:10.1142/S0217751X14300099
[11] Hollands, S.; Ishibashi, A.; Marolf, D., Comparison between various notions of conserved charges in asymptotically AdS-spacetimes, Class. Quant. Grav., 22, 2881 (2005) · Zbl 1082.83014 · doi:10.1088/0264-9381/22/14/004
[12] Compere, G.; Marolf, D., Setting the boundary free in AdS/CFT, Class. Quant. Grav., 25 (2008) · Zbl 1151.83305 · doi:10.1088/0264-9381/25/19/195014
[13] Faulkner, T.; Guica, M.; Hartman, T.; Myers, RC; Van Raamsdonk, M., Gravitation from Entanglement in Holographic CFTs, JHEP, 03, 051 (2014) · Zbl 1333.83141 · doi:10.1007/JHEP03(2014)051
[14] Andrade, T.; Kelly, WR; Marolf, D.; Santos, JE, On the stability of gravity with Dirichlet walls, Class. Quant. Grav., 32 (2015) · Zbl 1329.83038 · doi:10.1088/0264-9381/32/23/235006
[15] Jafferis, DL; Lewkowycz, A.; Maldacena, J.; Suh, SJ, Relative entropy equals bulk relative entropy, JHEP, 06, 004 (2016) · Zbl 1388.83268 · doi:10.1007/JHEP06(2016)004
[16] Lashkari, N.; Lin, J.; Ooguri, H.; Stoica, B.; Van Raamsdonk, M., Gravitational positive energy theorems from information inequalities, PTEP, 2016 (2016) · Zbl 1361.83023
[17] Dong, X.; Harlow, D.; Marolf, D., Flat entanglement spectra in fixed-area states of quantum gravity, JHEP, 10, 240 (2019) · Zbl 1427.83020 · doi:10.1007/JHEP10(2019)240
[18] Belin, A.; Lewkowycz, A.; Sárosi, G., The boundary dual of the bulk symplectic form, Phys. Lett. B, 789, 71 (2019) · Zbl 1406.81044 · doi:10.1016/j.physletb.2018.10.071
[19] Belin, A.; Lewkowycz, A.; Sárosi, G., Complexity and the bulk volume, a new York time story, JHEP, 03, 044 (2019) · Zbl 1414.81191 · doi:10.1007/JHEP03(2019)044
[20] G. Compere and F. Dehouck, Relaxing the Parity Conditions of Asymptotically Flat Gravity, Class. Quant. Grav.28 (2011) 245016 [Erratum ibid.30 (2013) 039501] [arXiv:1106.4045] [INSPIRE]. · Zbl 1232.83011
[21] Chandrasekaran, V.; Flanagan, EE; Prabhu, K., Symmetries and charges of general relativity at null boundaries, JHEP, 11, 125 (2018) · Zbl 1404.83016 · doi:10.1007/JHEP11(2018)125
[22] Carlip, S., Entropy from conformal field theory at Killing horizons, Class. Quant. Grav., 16, 3327 (1999) · Zbl 0935.83023 · doi:10.1088/0264-9381/16/10/322
[23] Haco, S.; Hawking, SW; Perry, MJ; Strominger, A., Black Hole Entropy and Soft Hair, JHEP, 12, 098 (2018) · Zbl 1405.83029 · doi:10.1007/JHEP12(2018)098
[24] S. Haco, M.J. Perry and A. Strominger, Kerr-Newman Black Hole Entropy and Soft Hair, arXiv:1902.02247 [INSPIRE]. · Zbl 1405.83029
[25] Regge, T.; Teitelboim, C., Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Annals Phys., 88, 286 (1974) · Zbl 0328.70016 · doi:10.1016/0003-4916(74)90404-7
[26] Hawking, SW; Horowitz, GT, The Gravitational Hamiltonian, action, entropy and surface terms, Class. Quant. Grav., 13, 1487 (1996) · Zbl 0860.58052 · doi:10.1088/0264-9381/13/6/017
[27] Hawking, SW; Hunter, CJ, The Gravitational Hamiltonian in the presence of nonorthogonal boundaries, Class. Quant. Grav., 13, 2735 (1996) · Zbl 0859.58038 · doi:10.1088/0264-9381/13/10/012
[28] Wald, RM, On identically closed forms locally constructed from a field, J. Math. Phys., 31, 2378 (1990) · Zbl 0728.53064 · doi:10.1063/1.528839
[29] B. Julia and S. Silva, On covariant phase space methods, hep-th/0205072 [INSPIRE].
[30] Papadimitriou, I.; Skenderis, K., Thermodynamics of asymptotically locally AdS spacetimes, JHEP, 08, 004 (2005) · doi:10.1088/1126-6708/2005/08/004
[31] Andrade, T.; Marolf, D., Asymptotic Symmetries from finite boxes, Class. Quant. Grav., 33 (2016) · Zbl 1331.83063 · doi:10.1088/0264-9381/33/1/015013
[32] Donnelly, W.; Giddings, SB, Observables, gravitational dressing, and obstructions to locality and subsystems, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.104038
[33] Giddings, SB; Kinsella, A., Gauge-invariant observables, gravitational dressings, and holography in AdS, JHEP, 11, 074 (2018) · Zbl 1404.81227 · doi:10.1007/JHEP11(2018)074
[34] Barnich, G.; Brandt, F., Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B, 633, 3 (2002) · Zbl 0995.81054 · doi:10.1016/S0550-3213(02)00251-1
[35] Barnich, G.; Compere, G., Surface charge algebra in gauge theories and thermodynamic integrability, J. Math. Phys., 49 (2008) · Zbl 1152.81327 · doi:10.1063/1.2889721
[36] Almaraz, S.; Barbosa, E.; de Lima, LL, A positive mass theorem for asymptotically flat manifolds with a non-compact boundary, Commun. Anal. Geom., 24, 673 (2016) · Zbl 1360.53035 · doi:10.4310/CAG.2016.v24.n4.a1
[37] S. Almaraz and L.L. de Lima, The mass of an asymptotically hyperbolic manifold with a noncompact boundary, arXiv:1811.06913 [INSPIRE].
[38] S. Almaraz, L.L. de Lima and L. Mari, Spacetime positive mass theorems for initial data sets with noncompact boundary, arXiv:1907.02023 [INSPIRE].
[39] Prabhu, K., The First Law of Black Hole Mechanics for Fields with Internal Gauge Freedom, Class. Quant. Grav., 34 (2017) · Zbl 1358.83058 · doi:10.1088/1361-6382/aa536b
[40] V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Mathematical aspects of classical and celestial mechanics, vol. 3, Springer Science & Business Media (2007) [DOI]. · Zbl 0885.70001
[41] E. Noether, Invariant Variation Problems, Transp. Theory Statist. Phys.1 (1971) 186 [Gott. Nachr.1918 (1918) 235] [physics/0503066] [INSPIRE]. · Zbl 0292.49008
[42] S. Lang, Fundamentals of differential geometry, vol. 191, Springer Science & Business Media (2012) [DOI]. · Zbl 0932.53001
[43] J.E. Marsden, Lectures on geometric methods in mathematical physics, SIAM (1981) [DOI]. · Zbl 0485.70001
[44] R. Abraham, J.E. Marsden and J.E. Marsden, Foundations of mechanics, vol. 36, Benjamin/Cummings Publishing Company Reading, Massachusetts (1978). · Zbl 0393.70001
[45] R.M. Wald, General Relativity, Chicago University Press, Chicago, U.S.A. (1984) [DOI] [INSPIRE]. · Zbl 0549.53001
[46] S.M. Carroll, Spacetime and geometry: An introduction to general relativity, Addison-Wesley (2004) [INSPIRE]. · Zbl 1131.83001
[47] Brown, J.; York, JW Jr, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D, 47, 1407 (1993) · doi:10.1103/PhysRevD.47.1407
[48] Arnowitt, RL; Deser, S.; Misner, CW, The Dynamics of general relativity, Gen. Rel. Grav., 40, 1997 (2008) · Zbl 1152.83320 · doi:10.1007/s10714-008-0661-1
[49] Teitelboim, C., Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B, 126, 41 (1983) · doi:10.1016/0370-2693(83)90012-6
[50] Jackiw, R., Lower Dimensional Gravity, Nucl. Phys. B, 252, 343 (1985) · doi:10.1016/0550-3213(85)90448-1
[51] Almheiri, A.; Polchinski, J., Models of AdS_2backreaction and holography, JHEP, 11, 014 (2015) · Zbl 1388.83079 · doi:10.1007/JHEP11(2015)014
[52] Jensen, K., Chaos in AdS_2Holography, Phys. Rev. Lett., 117, 111601 (2016) · doi:10.1103/PhysRevLett.117.111601
[53] Maldacena, J.; Stanford, D.; Yang, Z., Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP, 2016 (2016) · Zbl 1361.81112
[54] Engelsöy, J.; Mertens, TG; Verlinde, H., An investigation of AdS_2backreaction and holography, JHEP, 07, 139 (2016) · Zbl 1390.83104 · doi:10.1007/JHEP07(2016)139
[55] Navarro-Salas, J.; Navarro, M.; Aldaya, V., Covariant phase space quantization of the Jackiw-Teitelboim model of 2-D gravity, Phys. Lett. B, 292, 19 (1992) · doi:10.1016/0370-2693(92)90602-Z
[56] Henneaux, M., Quantum gravity in two-dimensions: exact solution of the Jackiw model, Phys. Rev. Lett., 54, 959 (1985) · doi:10.1103/PhysRevLett.54.959
[57] Harlow, D.; Jafferis, D., The Factorization Problem in Jackiw-Teitelboim Gravity, JHEP, 02, 177 (2020) · Zbl 1435.83127 · doi:10.1007/JHEP02(2020)177
[58] Peierls, RE, The Commutation laws of relativistic field theory, Proc. Roy. Soc. Lond. A, 214, 143 (1952) · Zbl 0048.44606 · doi:10.1098/rspa.1952.0158
[59] Forger, M.; Romero, SV, Covariant poisson brackets in geometric field theory, Commun. Math. Phys., 256, 375 (2005) · Zbl 1074.53071 · doi:10.1007/s00220-005-1287-8
[60] Marolf, DM, The Generalized Peierls bracket, Annals Phys., 236, 392 (1994) · Zbl 0806.58056 · doi:10.1006/aphy.1994.1117
[61] J. Margalef-Bentabol and E.J.S. Villaseñor, Geometric formulation of the Covariant Phase Space methods with boundaries, arXiv:2008.01842 [INSPIRE]. · Zbl 1302.83011
[62] Ashtekar, A.; Hansen, RO, A unified treatment of null and spatial infinity in general relativity. I — Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity, J. Math. Phys., 19, 1542 (1978) · doi:10.1063/1.523863
[63] Henneaux, M.; Teitelboim, C., Asymptotically anti-de Sitter Spaces, Commun. Math. Phys., 98, 391 (1985) · Zbl 1032.83502 · doi:10.1007/BF01205790
[64] A. Ashtekar, L. Bombelli and O. Reula, The covariant phase space of asymptotically flat gravitational fields, in Analysis, Geometry, and Mechanics: 200 Years After Lagrange, M. Francaviglia and D. Holm eds., North Holland, Amsterdam (1990) [INSPIRE]. · Zbl 0717.53056
[65] R. Bartnik, Phase space for the Einstein equations, gr-qc/0402070 [INSPIRE]. · Zbl 1123.83006
[66] Dong, X., Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP, 01, 044 (2014) · Zbl 1333.83156 · doi:10.1007/JHEP01(2014)044
[67] Wall, AC, A Second Law for Higher Curvature Gravity, Int. J. Mod. Phys. D, 24, 1544014 (2015) · Zbl 1329.83170 · doi:10.1142/S0218271815440149
[68] Donnelly, W.; Wall, AC, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.111603
[69] Harlow, D., Wormholes, Emergent Gauge Fields, and the Weak Gravity Conjecture, JHEP, 01, 122 (2016) · Zbl 1388.83255 · doi:10.1007/JHEP01(2016)122
[70] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity, JHEP, 09, 102 (2016) · Zbl 1390.83016 · doi:10.1007/JHEP09(2016)102
[71] Speranza, AJ, Local phase space and edge modes for diffeomorphism-invariant theories, JHEP, 02, 021 (2018) · Zbl 1387.83011 · doi:10.1007/JHEP02(2018)021
[72] Kirklin, J., Unambiguous Phase Spaces for Subregions, JHEP, 03, 116 (2019) · Zbl 1414.83033 · doi:10.1007/JHEP03(2019)116
[73] DeWitt, BS, Quantum Theory of Gravity. 1. The Canonical Theory, Phys. Rev., 160, 1113 (1967) · Zbl 0158.46504 · doi:10.1103/PhysRev.160.1113
[74] Hayward, G., Gravitational action for space-times with nonsmooth boundaries, Phys. Rev. D, 47, 3275 (1993) · doi:10.1103/PhysRevD.47.3275
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.