×

Black hole spectroscopy and \(\mathrm{AdS}_2\) holography. (English) Zbl 1415.83019

Summary: We compute the spectrum of extremal nonBPS black holes in four dimensions by studying supergravity on their \( \mathrm{AdS}_2 \times S^2\) near horizon geometry. We find that the spectrum exhibits significant simplifications even though supersymmetry is completely broken. We interpret our results in the framework of \(\mathrm{nAdS}_2 / \mathrm{nCFT}_1 \) correspondence and by comparing with dimensional reduction from \(\mathrm{AdS}_3 / \mathrm{CFT}_2 \) duality. As an additional test we compute quantum corrections to extremal black hole entropy on the nonBPS branch and recover results previously determined using very different methods.

MSC:

83C57 Black holes
83E05 Geometrodynamics and the holographic principle
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E50 Supergravity
81R40 Symmetry breaking in quantum theory
83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] J.M. Maldacena and A. Strominger, Black hole grey body factors and D-brane spectroscopy, Phys. Rev.D 55 (1997) 861 [hep-th/9609026] [INSPIRE].
[2] H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The Mass Spectrum of Chiral N = 2 D = 10 Supergravity on S5, Phys. Rev.D 32 (1985) 389 [INSPIRE].
[3] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept.130 (1986) 1 [INSPIRE]. · doi:10.1016/0370-1573(86)90163-8
[4] R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys.35 (1994) 4217 [INSPIRE]. · Zbl 0811.58061 · doi:10.1063/1.530850
[5] A. Sen, Logarithmic Corrections to N = 2 Black Hole Entropy: An Infrared Window into the Microstates, Gen. Rel. Grav.44 (2012) 1207 [arXiv:1108.3842] [INSPIRE]. · Zbl 1241.83051 · doi:10.1007/s10714-012-1336-5
[6] F. Larsen and P. Lisbao, Quantum Corrections to Supergravity on AdS2 × S2, Phys. Rev.D 91 (2015) 084056 [arXiv:1411.7423] [INSPIRE].
[7] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[8] J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE]. · Zbl 1390.83104 · doi:10.1007/JHEP07(2016)139
[9] K. Jensen, Chaos in AdS2Holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE]. · doi:10.1103/PhysRevLett.117.111601
[10] W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev.D 95 (2017) 026009 [Addendum ibid.D 95 (2017) 069904] [arXiv:1610.08917] [INSPIRE].
[11] U. Moitra, S.P. Trivedi and V. Vishal, Near-Extremal Near-Horizons, arXiv:1808.08239 [INSPIRE]. · Zbl 1418.83028
[12] S. Sachdev, Universal low temperature theory of charged black holes with AdS2horizons, 2019, arXiv:1902.04078 [INSPIRE]. · Zbl 1414.83037
[13] A. Castro, V. Godet, F. Larsen and Y. Zeng, Logarithmic Corrections to Black Hole Entropy: the Non-BPS Branch, JHEP05 (2018) 079 [arXiv:1801.01926] [INSPIRE]. · Zbl 1391.83103 · doi:10.1007/JHEP05(2018)079
[14] A.J. Amsel, G.T. Horowitz, D. Marolf and M.M. Roberts, No Dynamics in the Extremal Kerr Throat, JHEP09 (2009) 044 [arXiv:0906.2376] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/044
[15] O.J.C. Dias, H.S. Reall and J.E. Santos, Kerr-CFT and gravitational perturbations, JHEP08 (2009) 101 [arXiv:0906.2380] [INSPIRE]. · doi:10.1088/1126-6708/2009/08/101
[16] J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP02 (1999) 011 [hep-th/9812073] [INSPIRE]. · Zbl 0956.83052 · doi:10.1088/1126-6708/1999/02/011
[17] V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari and J. Simon, What is a chiral 2d CFT? And what does it have to do with extremal black holes?, JHEP02 (2010) 017 [arXiv:0906.3272] [INSPIRE]. · Zbl 1270.81149 · doi:10.1007/JHEP02(2010)017
[18] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
[19] F. Larsen, A nAttractor mechanism for nAdS2/nCFT1holography, JHEP04 (2019) 055 [arXiv:1806.06330] [INSPIRE]. · Zbl 1415.81087 · doi:10.1007/JHEP04(2019)055
[20] E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys.B 159 (1979) 141 [INSPIRE]. · doi:10.1016/0550-3213(79)90331-6
[21] S. Ferrara and R. Kallosh, On N = 8 attractors, Phys. Rev.D 73 (2006) 125005 [hep-th/0603247] [INSPIRE].
[22] A. Ceresole, S. Ferrara, A. Gnecchi and A. Marrani, More on N = 8 Attractors, Phys. Rev.D 80 (2009) 045020 [arXiv:0904.4506] [INSPIRE].
[23] D. Rasheed, The Rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys.B 454 (1995) 379 [hep-th/9505038] [INSPIRE]. · Zbl 0925.83066 · doi:10.1016/0550-3213(95)00396-A
[24] F. Larsen, Rotating Kaluza-Klein black holes, Nucl. Phys.B 575 (2000) 211 [hep-th/9909102] [INSPIRE]. · Zbl 0992.83068 · doi:10.1016/S0550-3213(00)00064-X
[25] A.A. Abrikosov, Jr., Fermion states on the sphere S2, Int. J. Mod. Phys.A 17 (2002) 885 [hep-th/0111084] [INSPIRE]. · doi:10.1142/S0217751X02010261
[26] C.G. Callan Jr., S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Absorption of fixed scalars and the D-brane approach to black holes, Nucl. Phys.B 489 (1997) 65 [hep-th/9610172] [INSPIRE]. · Zbl 0925.83052 · doi:10.1016/S0550-3213(97)00013-8
[27] A. Castro, F. Larsen and I. Papadimitriou, 5D rotating black holes and the nAdS2/nCFT1correspondence, JHEP10 (2018) 042 [arXiv:1807.06988] [INSPIRE]. · Zbl 1402.83073 · doi:10.1007/JHEP10(2018)042
[28] M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav.11 (1994) 1387 [hep-th/9308075] [INSPIRE]. · Zbl 0808.53063 · doi:10.1088/0264-9381/11/6/004
[29] D.V. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept.388 (2003) 279 [hep-th/0306138] [INSPIRE]. · Zbl 1042.81093 · doi:10.1016/j.physrep.2003.09.002
[30] R. Camporesi and A. Higuchi, On the Eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys.20 (1996) 1 [gr-qc/9505009] [INSPIRE]. · Zbl 0865.53044
[31] A.C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, Eleven-dimensional supergravity compactified on Calabi-Yau threefolds, Phys. Lett.B 357 (1995) 76 [hep-th/9506144] [INSPIRE]. · doi:10.1016/0370-2693(95)00891-N
[32] J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP12 (1997) 002 [hep-th/9711053] [INSPIRE]. · Zbl 0951.83034 · doi:10.1088/1126-6708/1997/12/002
[33] R.K. Gupta and A. Sen, AdS3/CFT2to AdS2/CFT1, JHEP04 (2009) 034 [arXiv:0806.0053] [INSPIRE]. · doi:10.1088/1126-6708/2009/04/034
[34] A. Castro, C. Keeler and F. Larsen, Three Dimensional Origin of AdS2Quantum Gravity, JHEP07 (2010) 033 [arXiv:1004.0554] [INSPIRE]. · Zbl 1290.83033 · doi:10.1007/JHEP07(2010)033
[35] M. Cvetič and I. Papadimitriou, AdS2holographic dictionary, JHEP12 (2016) 008 [Erratum ibid.1701 (2017) 120] [arXiv:1608.07018] [INSPIRE]. · Zbl 1390.83186
[36] J. Hartong, Y. Lei, N.A. Obers and G. Oling, Zooming in on AdS3/CFT2near a BPS bound, JHEP05 (2018) 016 [arXiv:1712.05794] [INSPIRE]. · Zbl 1391.81165 · doi:10.1007/JHEP05(2018)016
[37] A. Almheiri and J. Polchinski, Models of AdS2backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE]. · Zbl 1388.83079 · doi:10.1007/JHEP11(2015)014
[38] J. Preskill, P. Schwarz, A.D. Shapere, S. Trivedi and F. Wilczek, Limitations on the statistical description of black holes, Mod. Phys. Lett.A 6 (1991) 2353 [INSPIRE]. · Zbl 1020.83620 · doi:10.1142/S0217732391002773
[39] A. Almheiri and B. Kang, Conformal Symmetry Breaking and Thermodynamics of Near-Extremal Black Holes, JHEP10 (2016) 052 [arXiv:1606.04108] [INSPIRE]. · Zbl 1390.83167 · doi:10.1007/JHEP10(2016)052
[40] N. Seiberg, Why is the matrix model correct?, Phys. Rev. Lett.79 (1997) 3577 [hep-th/9710009] [INSPIRE]. · Zbl 0946.81062 · doi:10.1103/PhysRevLett.79.3577
[41] S.R. Das and S.D. Mathur, Comparing decay rates for black holes and D-branes, Nucl. Phys.B 478 (1996) 561 [hep-th/9606185] [INSPIRE]. · Zbl 0925.81200 · doi:10.1016/0550-3213(96)00453-1
[42] J. Michelson and M. Spradlin, Supergravity spectrum on AdS2 × S2, JHEP09 (1999) 029 [hep-th/9906056] [INSPIRE]. · Zbl 0955.83039 · doi:10.1088/1126-6708/1999/09/029
[43] S. Corley, Mass spectrum of N = 8 supergravity on AdS2 × S2, JHEP09 (1999) 001 [hep-th/9906102] [INSPIRE]. · Zbl 0955.83038 · doi:10.1088/1126-6708/1999/09/001
[44] J. de Boer, Six-dimensional supergravity on S3 × AdS3and 2 − D conformal field theory, Nucl. Phys.B 548 (1999) 139 [hep-th/9806104] [INSPIRE]. · Zbl 0944.83032 · doi:10.1016/S0550-3213(99)00160-1
[45] F. Larsen, The Perturbation spectrum of black holes in N = 8 supergravity, Nucl. Phys.B 536 (1998) 258 [hep-th/9805208] [INSPIRE]. · Zbl 0940.83031 · doi:10.1016/S0550-3213(98)00564-1
[46] D. Kutasov, F. Larsen and R.G. Leigh, String theory in magnetic monopole backgrounds, Nucl. Phys.B 550 (1999) 183 [hep-th/9812027] [INSPIRE]. · Zbl 0947.81078 · doi:10.1016/S0550-3213(99)00144-3
[47] F. Larsen and E.J. Martinec, Currents and moduli in the (4, 0) theory, JHEP11 (1999) 002 [hep-th/9909088] [INSPIRE]. · Zbl 0957.81042 · doi:10.1088/1126-6708/1999/11/002
[48] M. Cvetič and F. Larsen, Black Holes with Intrinsic Spin, JHEP11 (2014) 033 [arXiv:1406.4536] [INSPIRE]. · Zbl 1333.83068 · doi:10.1007/JHEP11(2014)033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.