×

The off-shell 4D/5D connection. (English) Zbl 1309.81143

Summary: A systematic off-shell reduction scheme from five to four space-time dimensions is presented for supergravity theories with eight supercharges. It is applicable to theories with higher-derivative couplings and it is used to address a number of open questions regarding BPS black holes in five dimensions. Under this reduction the \(5D\) Weyl multiplet becomes reducible and decomposes into the \(4D\) Weyl multiplet and an extra Kaluza-Klein vector multiplet. The emergence of the pseudoscalar field of the latter multiplet and the emergence of the 4\(D\) R-symmetry group are subtle features of the reduction. The reduction scheme enables to determine how a 5\(D\) supersymmetric Lagrangian with higher-derivative couplings decomposes upon dimensional reduction into a variety of independent \(4D\) supersymmetric invariants, without the need for imposing field equations. In this way we establish, for example, the existence of a new N=2 supersymmetric invariant that involves the square of the Ricci tensor. Finally we resolve the questions associated with the \(5D\) Chern-Simons terms for spinning BPS black holes and their relation to the corresponding 4\(D\) black holes.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
83E50 Supergravity
83E15 Kaluza-Klein and other higher-dimensional theories
58J28 Eta-invariants, Chern-Simons invariants

References:

[1] B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry structure of special geometries, Nucl. Phys.B 400 (1993) 463 [hep-th/9210068] [INSPIRE]. · Zbl 0941.83529 · doi:10.1016/0550-3213(93)90413-J
[2] D. Gaiotto, A. Strominger and X. Yin, New connections between 4D and 5D black holes, JHEP02 (2006) 024 [hep-th/0503217] [INSPIRE]. · doi:10.1088/1126-6708/2006/02/024
[3] D. Gaiotto, A. Strominger and X. Yin, 5D black rings and 4D black holes, JHEP02 (2006) 023 [hep-th/0504126] [INSPIRE]. · doi:10.1088/1126-6708/2006/02/023
[4] K. Behrndt, G. Lopes Cardoso and S. Mahapatra, Exploring the relation between 4D and 5D BPS solutions, Nucl. Phys.B 732 (2006) 200 [hep-th/0506251] [INSPIRE]. · Zbl 1192.83062 · doi:10.1016/j.nuclphysb.2005.10.026
[5] T. Kugo and K. Ohashi, Supergravity tensor calculus in 5D from 6D, Prog. Theor. Phys.104 (2000) 835 [hep-ph/0006231] [INSPIRE]. · doi:10.1143/PTP.104.835
[6] K. Hanaki, K. Ohashi and Y. Tachikawa, Supersymmetric completion of an R2term in five-dimensional supergravity, Prog. Theor. Phys.117 (2007) 533 [hep-th/0611329] [INSPIRE]. · Zbl 1183.83103 · doi:10.1143/PTP.117.533
[7] E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys.B 182 (1981) 173 [INSPIRE]. · doi:10.1016/0550-3213(81)90465-X
[8] G. Lopes Cardoso, B. de Wit, J. Käppeli and T. Mohaupt, Stationary BPS solutions in N = 2 supergravity with R2interactions, JHEP12(2000) 019 [hep-th/0009234] [INSPIRE]. · Zbl 0990.83567 · doi:10.1088/1126-6708/2000/12/019
[9] B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings: full N = 2 superspace does not count!, JHEP01 (2011) 007 [arXiv:1010.2150] [INSPIRE]. · Zbl 1214.83043 · doi:10.1007/JHEP01(2011)007
[10] A. Castro, J.L. Davis, P. Kraus and F. Larsen, 5D black holes and strings with higher derivatives, JHEP06 (2007) 007 [hep-th/0703087] [INSPIRE]. · doi:10.1088/1126-6708/2007/06/007
[11] A. Castro, J.L. Davis, P. Kraus and F. Larsen, Precision entropy of spinning black holes, JHEP09 (2007) 003 [arXiv:0705.1847] [INSPIRE]. · doi:10.1088/1126-6708/2007/09/003
[12] A. Castro, J.L. Davis, P. Kraus and F. Larsen, String theory effects on five-dimensional black hole physics, Int. J. Mod. Phys.A 23 (2008) 613 [arXiv:0801.1863] [INSPIRE]. · Zbl 1162.83009
[13] B. de Wit and S. Katmadas, Near-horizon analysis of D = 5 BPS black holes and rings, JHEP02 (2010) 056 [arXiv:0910.4907] [INSPIRE]. · Zbl 1270.83025 · doi:10.1007/JHEP02(2010)056
[14] B. de Wit, B. Kleijn and S. Vandoren, Superconformal hypermultiplets, Nucl. Phys.B 568 (2000) 475 [hep-th/9909228] [INSPIRE]. · Zbl 0951.81042 · doi:10.1016/S0550-3213(99)00726-9
[15] B. de Wit, P. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravity-matter systems, Nucl. Phys.B 255 (1985) 569 [INSPIRE]. · doi:10.1016/0550-3213(85)90154-3
[16] B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged N = 2 supergravity: Yang-Mills models, Nucl. Phys.B 245 (1984) 89 [INSPIRE]. · doi:10.1016/0550-3213(84)90425-5
[17] S. Ferrara and B. Zumino, Structure of conformal supergravity, Nucl. Phys.B 134 (1978) 301 [INSPIRE]. · doi:10.1016/0550-3213(78)90548-5
[18] S. Ferrara and P. Van Nieuwenhuizen, Structure of supergravity, Phys. Lett.B 78 (1978) 573 [INSPIRE]
[19] P. Townsend and P. van Nieuwenhuizen, Anomalies, topological invariants and the Gauss-Bonnet theorem in supergravity, Phys. Rev.D 19 (1979) 3592 [INSPIRE]. · Zbl 1267.83084
[20] R. Grimm, J. Wess and B. Zumino, A complete solution of the Bianchi identities in superspace, Nucl. Phys.B 152 (1979) 255 [INSPIRE]. · doi:10.1016/0550-3213(79)90102-0
[21] A. Sen, Logarithmic corrections to N = 2 black hole entropy: an infrared window into the microstates, arXiv:1108.3842 [INSPIRE]. · Zbl 1241.83051
[22] J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev.D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].
[23] I. Bena and P. Kraus, Microscopic description of black rings in AdS/CFT, JHEP12 (2004) 070 [hep-th/0408186] [INSPIRE]. · doi:10.1088/1126-6708/2004/12/070
[24] M. Cyrier, M. Guica, D. Mateos and A. Strominger, Microscopic entropy of the black ring, Phys. Rev. Lett.94 (2005) 191601 [hep-th/0411187] [INSPIRE]. · doi:10.1103/PhysRevLett.94.191601
[25] I. Bena, P. Kraus and N.P. Warner, Black rings in Taub-NUT, Phys. Rev.D 72 (2005) 084019 [hep-th/0504142] [INSPIRE].
[26] I. Bena and P. Kraus, R2corrections to black ring entropy, hep-th/0506015 [INSPIRE].
[27] K. Hanaki, K. Ohashi and Y. Tachikawa, Comments on charges and near-horizon data of black rings, JHEP12 (2007) 057 [arXiv:0704.1819] [INSPIRE]. · Zbl 1246.83204 · doi:10.1088/1126-6708/2007/12/057
[28] M. Henneaux and C. Teitelboim, Quantization of topological mass in the presence of a magnetic pole, Phys. Rev. Lett.56 (1986) 689 [INSPIRE]. · doi:10.1103/PhysRevLett.56.689
[29] X. Bekaert, Issues in electric magnetic duality, hep-th/0209169 [INSPIRE].
[30] X. Bekaert and A. Gomberoff, Quantization of the Chern-Simons coupling constant, JHEP01 (2003) 054 [hep-th/0212099] [INSPIRE]. · Zbl 1226.81276 · doi:10.1088/1126-6708/2003/01/054
[31] B. de Wit, J. van Holten and A. Van Proeyen, Structure of N = 2 supergravity, Nucl. Phys.B 184 (1981) 77 [Erratum ibid.B 222 (1983) 516] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.