×

Discrete spectra of convolutions of compactly supported functions on \(\mathrm{SE}(2)\) using Sturm-Liouville theory. (English) Zbl 1452.43002

Representations of functions \(f\in L^2(\text{SE}(2))\) with compact support are given, where \(\text{SE}(2)\) is the semidirect product of \(\mathbb{R}^2\) with the special orthogonal group \(\text{SO}(2)\). With \(B_a^2=\{x\in \mathbb{R}^2:\|x\|\le a\}\), \(a>0\), the set \(D_a^2=B_a^2\times\text{SO}(2)\) is a compact subset of \(\text{SE}(2)\). The series expansions are with respect to orthogonal bases of \(L_2(D_a^2)\), which involve (generalized) Bessel functions as eigenfunctions of the Dirichlet and Neumann problems for the (generalized) Bessel differential equation on \((0,a)\), respectively. Explicit integral representations for the Fourier coefficients of functions and of convolutions of functions are given.

MSC:

43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
34B24 Sturm-Liouville theory
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
43A20 \(L^1\)-algebras on groups, semigroups, etc.
Full Text: DOI

References:

[1] Bernier, D.; Taylor, Kf., Wavelets from square-integrable representations, SIAM J Math Anal, 27, 2, 594-608 (1996) · Zbl 0843.42018 · doi:10.1137/S0036141093256265
[2] Arefijamaal, A.; Zekaee, E., Signal processing by alternate dual Gabor frames, Appl Comput Harmon Anal, 35, 3, 535-540 (2013) · Zbl 1293.42030 · doi:10.1016/j.acha.2013.06.001
[3] Kisil, V., Geometry of Möbius transformations, Elliptic, parabolic and hyperbolic actions of \(#### (2012)\), London: Imperial College Press, London · Zbl 1254.30001
[4] Miyazaki, T., Two dimensional Euclidean group and the partial-wave expansion I, Prog Theor Phys, 39, 5, 1319-1325 (1968) · doi:10.1143/ptp/39.5.1319
[5] Ghaani, Farashahi A.; Chirikjian, Gs., Fourier-Zernike series of convolutions on disks, Mathematics, 6, 12, 290 (2018) · Zbl 1425.43003 · doi:10.3390/math6120290
[6] Barbieri, D.; Citti, G., Reproducing kernel Hilbert spaces of CR functions for the Euclidean motion group, Anal Appl (Singap), 13, 3, 331-346 (2015) · Zbl 1335.46022 · doi:10.1142/S021953051450047X
[7] Chirikjian, Gs., Stochastic models, information theory, and lie groups. Vol. 2. Analytic methods and modern applications. Applied and numerical harmonic analysis (2012), New York (NY): Birkhäuser/Springer, New York (NY) · Zbl 1245.60001
[8] Chirikjian, Gs., Stochastic models, information theory, and lie groups. Vol. 1. Classical results and geometric methods. Applied and numerical harmonic analysis (2009), Boston (MA): Birkhäuser, Boston (MA) · Zbl 1182.60001
[9] Duits, R.; Van Almsick, M., The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D Euclidean motion group, Quart Appl Math, 66, 1, 27-67 (2008) · Zbl 1153.60040 · doi:10.1090/S0033-569X-07-01066-0
[10] Lenz, RGroup theoretical methods in image processing. Lecture Notes in Computer Science, 413. Berlin: Springer-Verlag; 1990. · Zbl 0845.68119
[11] Lesosky, M.; Kim, Pt; Kribs, Dw., Regularized deconvolution on the \(####\)-Euclidean motion group, Inverse Probl, 24, 5, 055017, 15 pp (2008) · Zbl 1284.43007 · doi:10.1088/0266-5611/24/5/055017
[12] Yarman, Ce; Yazici, B., A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group, Inverse Probl Imag, 1, 3, 457-479 (2007) · Zbl 1133.44002 · doi:10.3934/ipi.2007.1.457
[13] Yarman, Ce; Yazici, B., Euclidean motion group representations and the singular value decomposition of the Radon transform, Integral Transforms Spec Funct, 18, 1-2, 59-76 (2007) · Zbl 1127.53064 · doi:10.1080/10652460600856450
[14] Chirikjian, Gs; Kyatkin, Ab., Harmonic analysis for engineers and applied scientists: updated and expanded edition (2016), Mineola (NY: Courier Dover Publications, Mineola (NY
[15] Chirikjian, Gs; Kyatkin, Ab., Engineering applications of noncommutative harmonic analysis (2000), Boca Raton (FL: CRC Press, Boca Raton (FL
[16] Kim, Wy; Kim, Ys., Robust rotation angle estimator, IEEE Trans Pattern Anal Mach Intell, 21, 8, 768-773 (1999) · doi:10.1109/34.784290
[17] Kavraki, Le., Computation of configuration-space obstacles using the fast Fourier transform, IEEE Trans Rob Autom, 11, 3, 408-413 (1995) · doi:10.1109/70.388783
[18] Kyatkin, Ab; Chirikjian, Gs., Algorithms for fast convolutions on motion groups, Appl Comput Harmon Anal, 9, 220-241 (2000) · Zbl 0966.65120 · doi:10.1006/acha.2000.0321
[19] Kyatkin, Ab; Chirikjian, Gs., Computation of robot configuration and workspaces via the Fourier transform on the discrete motion group, Int J Robot Res, 18, 6, 601-615 (1999) · doi:10.1177/02783649922066420
[20] Ghaani Farashahi, AAbstract Banach convolution function modules over coset spaces of compact subgroups in locally compact groups. Bull Braz Math Soc. New Series; 2019. doi:. · Zbl 1358.22001
[21] Ghaani Farashahi, A., A class of abstract linear representations for convolution function algebras over homogeneous spaces of compact groups, Canad J Math, 70, 1, 97-116 (2018) · Zbl 1388.43013 · doi:10.4153/CJM-2016-043-9
[22] Ghaani Farashahi, A., Abstract harmonic analysis of relative convolutions over canonical homogeneous spaces of semidirect product groups, J Aust Math Soc, 101, 2, 171-187 (2016) · Zbl 1360.43006 · doi:10.1017/S1446788715000798
[23] Ghaani Farashahi, A., Abstract convolution function algebras over homogeneous spaces of compact groups, Illinois J Math, 59, 4, 1025-1042 (2015) · Zbl 1358.22001 · doi:10.1215/ijm/1488186019
[24] Kisil, V., Relative convolutions. I. Properties and applications, Adv Math, 147, 1, 35-73 (1999) · Zbl 0933.43004 · doi:10.1006/aima.1999.1833
[25] Kisil, V., Calculus of operators: covariant transform and relative convolutions, Banach J Math Anal, 8, 2, 156-184 (2014) · Zbl 1305.43009 · doi:10.15352/bjma/1396640061
[26] Feichtinger, Hg., On a new Segal algebra, Monatsh Math, 92, 4, 269-289 (1981) · Zbl 0461.43003 · doi:10.1007/BF01320058
[27] Feichtinger, Hg., Banach convolution algebras of functions II, Monatsh Math, 87, 3, 181-207 (1979) · Zbl 0388.43004 · doi:10.1007/BF01303075
[28] Feichtinger, Hg., On a class of convolution algebras of functions, Ann Inst Fourier, 27, 3, 135-162 (1977) · Zbl 0316.43004 · doi:10.5802/aif.665
[29] Feichtinger, Hg; Gröchenig, Kh., Banach spaces related to integrable group representations and their atomic decompositions. I, J Funct Anal, 86, 2, 307-340 (1989) · Zbl 0691.46011 · doi:10.1016/0022-1236(89)90055-4
[30] Feichtinger, Hg; Gröchenig, Kh., Banach spaces related to integrable group representations and their atomic decompositions. II, Monatsh Math, 108, 2-3, 129-148 (1989) · Zbl 0713.43004 · doi:10.1007/BF01308667
[31] Al-Gwaiz, Ma., Sturm-Liouville theory and its applications (2008), London: Springer-Verlag Ltd, London · Zbl 1145.34001
[32] Zettl, A.Sturm-Liouville theory. Mathematical Surveys and Monographs, 121. Providence (RI): American Mathematical Society; 2005. · Zbl 1103.34001
[33] Brezin, J.Unitary representation theory for solvable lie groups. Memoirs of the American Mathematical Society, No. 79. Providence (RI): American Mathematical Society; 1968. · Zbl 0157.36603
[34] Gurarie, D., Symmetry and Laplacians. Introduction to harmonic analysis, group representations and applications (1992), Amsterdam: Elsevier, Amsterdam · Zbl 0787.22001
[35] Rubin, Rl., Harmonic analysis on the group of rigid motions of the Euclidean plane, Studia Math, 62, 2, 125-141 (1978) · Zbl 0394.43008 · doi:10.4064/sm-62-2-125-142
[36] Sugiura, MUnitary representations and harmonic analysis. An introduction. 2nd ed. North-Holland Mathematical Library, 44. Amsterdam: North-Holland/Tokyo: Kodansha; 1990. · Zbl 0697.22001
[37] Symons, J., Irreducible representations of the group of movements of the Euclidean plane, J Aust Math Soc, 18, 78-96 (1974) · Zbl 0304.22013 · doi:10.1017/S1446788700019145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.