×

Relative convolutions. I: Properties and applications. (English) Zbl 0933.43004

The author introduces the notion of relative convolutions and studies the operators of relative convolutions induced by a Lie algebra. He describes some basic properties of such convolutions (a formula for the composition of relative convolutions, etc.) and gives various applications. It is established that an algebra of relative convolutions induced by a Lie algebra \(g\) is a representation of the algebra of group convolutions on the Lie group \(\exp g\). The theory of relative convolutions is tightly connected with the theory of PDE and Heisenberg groups. The connection of this notion with some well-known classes of operators (operators of multiplication, two-sided convolutions, group convolutions, etc.) is considered. Some applications to the theory of pseudo-differential operators, to complex and hypercomplex analysis, coherent states, wavelets and quantum mechanics are also given. Contents. 1. Introduction. 2. Relative convolutions. 3. Basic properties. 4. Applications to complex and hypercomplex analysis. 5. Coherent states. 6. Applications to physics and signal theory. 7. Conclusion.

MSC:

43A80 Analysis on other specific Lie groups
45P05 Integral operators
22E60 Lie algebras of Lie groups
32M05 Complex Lie groups, group actions on complex spaces
81R30 Coherent states
81S99 General quantum mechanics and problems of quantization
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods

References:

[1] Anderson, R. F.V., The Weyl functional calculus, J. Funct. Anal., 4, 240-267 (1969) · Zbl 0191.13403
[2] Bargmann, V., On a Hilbert space of analytic functions, Comm. Pure Appl. Math., 3, 215-228 (1961) · Zbl 0107.09102
[3] Belov, V. V.; Kondratieva, M. F., Hamilton systems of equations for quantum mean values, Mat. Zamet., 54 (1994)
[4] Berestetskii, V. B.; Lifshitz, E. M.; Pitaevski, L. P., (Landay, L. D.; Lifshitz, E. M., Quantum Electrodynamics. Quantum Electrodynamics, Course of Theoretical Physics, 4 (1982), Pergamon: Pergamon Oxford)
[5] Berezin, F. A., Non Wiener continual integrals, Theoret. Math. Physics, 6, 194-212 (1971) · Zbl 0207.11603
[6] Berezin, F. A., Covariant and contravariant symbols of operators, Math. USSR Izv., 6, 1117-1151 (1972) · Zbl 0259.47004
[7] Berezin, F. A., Quantization, Math. USSR Izv., 8, 1109-1165 (1974) · Zbl 0312.53049
[8] Berezin, F. A., Method of Second Quantization (1988), Nauka: Nauka Moscow · Zbl 0131.44805
[9] Berger, C. A.; Coburn, L. A., Toeplitz operators and quantum mechanics, J. Funct. Anal., 68, 273-299 (1986) · Zbl 0629.47022
[10] Berger, C. A.; Coburn, L. A., Toeplitz operators on the Segal-Bargmann space, Trans. AMS, 301, 13-829 (1987) · Zbl 0625.47019
[11] Bernier, D.; Taylor, K. F., Wavelets from square-integrable representations, SIAM J. Math. Anal., 27, 594-608 (1996) · Zbl 0843.42018
[12] Bogoliubov, N. N.; Shirkov, D. V., Introduction to the Theory of Quantized Fields (1980), Wiley: Wiley New York · Zbl 0925.81002
[13] de Monvel, L. B.; Guillemin, V., The Spectral Theory of Toeplitz Operators (1985), Princeton Univ. Press: Princeton Univ. Press Princeton
[14] Coburn, L. A., Toeplitz operators, quantum mechanics, and mean oscillation in the Bergman metric, Proc. Symposia Pure Math., 51, 97-104 (1990) · Zbl 0705.47022
[15] Cotlar, M.; Sadosky, C., Toeplitz and Hankel forms related to unitary representations of the symplective plane, Colloq. Math., 50/51, 693-708 (1990) · Zbl 0763.47011
[16] Cotlar, M.; Sadosky, C., Two-parameter lifting theorems and double Hilbert transforms in commutative and non-commutative setting, J. Math. Anal. Appl., 150, 439-480 (1990) · Zbl 0718.47011
[17] Cotlar, M.; Sadosky, C., The Adamjan-Arov-Krein theorem in general and regular representations of R2 and the symplectic plane, Operator Theory Adv. Appl., 71 (1994) · Zbl 0818.47021
[18] Delanghe, R.; Sommen, F.; Souček, V., Clifford Algebra and Spinor-Valued Functions (1992), Kluwer: Kluwer Dordrecht · Zbl 0747.53001
[19] Dirac, P. A.M., Lectures on Quantum Field Theory (1967), Yeshiva University: Yeshiva University New York · Zbl 0033.09303
[20] Dixmier, J., Les \(C\)*-algebres et Leurs Representations (1964), Gauthier-Villars: Gauthier-Villars Paris · Zbl 0152.32902
[21] Dynin, A. S., Pseudodifferential operators on the Heisenberg group, Soviet Math. Dokl., 16, 1608-1612 (1975) · Zbl 0328.58017
[22] Dynin, A. S., An algebra of pseudodifferential operators on the Heisenberg group: Symbolic calculus, Soviet Math. Dokl., 17, 508-512 (1976) · Zbl 0338.35086
[23] Feynman, R. P., An operator calculus having applications in quantum electrodynamics, Phys. Rev., 84, 108-128 (1951) · Zbl 0044.23304
[24] Fock, V. A., Konfigurationsraum und zweite quantelung, Z. Phys., 75, 622-647 (1932) · Zbl 0004.28003
[25] Folland, G. B., Harmonic Analysis in Phase Space (1989), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0671.58036
[26] Folland, G. B., Meta-Heisenberg groups, (Bray, W. O.; Milojević, P. S.; Stanojević, C. V., Fourier Analysis: Analytic and Geometric Aspects. Fourier Analysis: Analytic and Geometric Aspects, Lecture Notes in Pure and Applied Mathematics, 157 (1994), Dekker: Dekker New York), 121-147 · Zbl 0842.22006
[27] Gindikin, S. G., Analysis on homogeneous domains, Russian Math. Surveys, 19, 1-89 (1964) · Zbl 0144.08101
[28] Greiner, P. S.; Stein, E. M., Estimates for the ∂-Neumann Problem (1977), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0354.35002
[29] Guillemin, V., Toeplitz operator in \(n\)-dimensions, Integral Equations Operator Theory, 7, 145-205 (1984) · Zbl 0561.47025
[30] Heil, C. E.; Walnut, D. F., Continuous and discrete wavelet transforms, SIAM Rev., 31, 628-666 (1989) · Zbl 0683.42031
[31] Hörmander, L., The Analysis of Linear Partial Differential Operators, Vol. III, Pseudodifferential Operators (1985), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York/Tokyo · Zbl 0601.35001
[32] Howe, R., On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. (N.S.), 3, 821-843 (1980) · Zbl 0442.43002
[33] Howe, R., Quantum mechanics and partial differential equations, J. Funct. Anal., 38, 188-254 (1980) · Zbl 0449.35002
[34] Kalyuzhny, D. S., The \(C\)*-algebra, generated by the operators of two-sided convolution on Heisenberg group, Dokl. Acad. Nauk SSSR, 332, 8-11 (1993) · Zbl 0819.46045
[35] Kirillov, A. A., Unitary representations of nilpotent Lie groups, Russian Math. Surveys, 17, 53-104 (1962) · Zbl 0106.25001
[36] Kirillov, A. A., Elements of the Theory of Representations (1974), Springer-Verlag: Springer-Verlag New York · Zbl 0285.22011
[37] Kisil, V. V., Algebras of Pseudodifferential Operators Associated with the Heisenberg Group (1991), Odessa State UniversityDepartment of Mathematics: Odessa State UniversityDepartment of Mathematics Odessa
[38] Kisil, V. V., The algebra of two-sided convolutions on Heisenberg group, Russian Acad. Sci. Dokl. Math., 46, 12-16 (1993)
[39] Kisil, V. V., Connection between two-sided and one-sided convolution type operators on a non-commutative group, Integral Equations Operator Theory, 22, 317-332 (1995) · Zbl 0840.43020
[40] Kisil, V. V., Local behavior of two-sided convolution operators with singular kernel on the Heisenberg group, Math. Notes, 56, 41-55 (1994) · Zbl 0841.43020
[41] Kisil, V. V., Quantum probabilities and non-commutative Fourier transform on the Heisenberg group, (Kalton, N.; Saab, E., Functional Analysis, Harmonic Analysis, and Probability. Functional Analysis, Harmonic Analysis, and Probability, Lecture Notes in Pure and Applied Mathematics (1994), Dekker: Dekker New York), 255-266 · Zbl 0842.22020
[42] Kravchenko, V. V., On biquaternionic bag model, Z. Anal. Anwendungen, 14 (1995) · Zbl 0814.35025
[43] Lanczos, C., The Variational Principles of Mechanics. The Variational Principles of Mechanics, Mathematical Expositions, 4 (1970), University of Toronto Press: University of Toronto Press Toronto · Zbl 0138.19705
[44] Lang, S., Algebra (1969), Addison-Wesley: Addison-Wesley New York · Zbl 0176.00504
[45] Laville, G., Sur un calcul symbolique de Feynmann, Seminar d’Analyse. Seminar d’Analyse, Lecture Notes in Mathematics, 1295 (1987), Springer-Verlag: Springer-Verlag Berlin, p. 132-145 · Zbl 0721.47034
[46] Laville, G., On Cauchy-Kovalevski extension, J. Funct. Anal., 101, 25-37 (1991) · Zbl 0762.47020
[47] Malonek, H. R., Hypercomplex differentiability and its applications, (Bracks, F., Clifford Algebras and Applications in Mathematical Physics (1993), Kluwer Academic: Kluwer Academic Dordrecht), 141-150 · Zbl 0835.30038
[48] Maslov, V. P., Operational Methods (1973), Nauka: Nauka Moscow · Zbl 0288.47042
[49] Perelomov, A. M., Generalized Coherent States and Their Applications (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0605.22013
[50] Riesz, F.; Sz-Nagy, B., Functional Analysis (1955), Ungar: Ungar New York
[51] Rudin, W., Function Theory in the Unit Ball of \(C^n (1980)\), Springer-Verlag: Springer-Verlag New York · Zbl 0495.32001
[52] Segal, I. E., Lectures at the Summer Seminar on Applied Mathematics (1960), Boulder
[53] Shubin, M. A., Pseudodifferential Operators and Spectral Theory (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0616.47040
[54] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals (1993), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0821.42001
[55] Taylor, M. E., Pseudodifferential Operators. Pseudodifferential Operators, Princeton Mathematical Series, 34 (1981), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0453.47026
[56] Taylor, M. E., Non Commutative Microlocal Analysis, Part 1. Non Commutative Microlocal Analysis, Part 1, Memoirs of the AMS, 313 (1984), Amer. Math. Society: Amer. Math. Society Providence · Zbl 0554.35025
[57] Taylor, M. E., Noncommutative Harmonic Analysis. Noncommutative Harmonic Analysis, Mathematical Surveys and Monographs, 22 (1986), American Math. Society: American Math. Society Providence · Zbl 0604.43001
[58] Vasilevski, N. L.; Trujillo, R., Group convolution operators on standard CR-manifold. I. Structural properties, Integral Equations Operator Theory, 19, 65-107 (1994) · Zbl 0829.43005
[59] Weyl, H., The Theory of Groups and Quantum Mechanics (1950), Dover: Dover New York · Zbl 0041.25401
[60] Woodhouse, N., Geometric Quantization (1980), Clarendon: Clarendon Oxford · Zbl 0458.58003
[61] Kisil, V. V., Möbius transformations and monogenic functional calculus, Electron. Res. Announc. Amer. Math. Soc., 2, 26-33 (1996) · Zbl 0869.47013
[62] Kisil, V. V., Wavelets in Banach spaces, Acta Appl. Mat. (1999) · Zbl 0955.42024
[63] Kisil, V. V., Analysis in \(R^{1, 1}\) or the principal function theory, Complex Variables Theory Appl. (1999) · Zbl 0983.30022
[64] Cnops, J.; Kisil, V. V., Monogenic functions and representations of nilpotent Lie groups in quantum mechanics, Math. Methods Appl. Sci., 22, 353-373 (1999) · Zbl 0923.22003
[65] Prezhdo, O. P.; Kisil, V. V., Mixing quantum and classic mechanics, Phys. Rev. (A), 56, 162-176 (1997)
[66] (Begehr, H.; Celebi, O.; Tutschke, W., Complex Methods for Partial Differential Equations (1999), Kluwer: Kluwer Dordrecht), 219-248 · Zbl 0930.00044
[67] Kassel, C., Quantum Groups. Quantum Groups, Graduate Text in Mathematics, 155 (1994), Springer-Verlag: Springer-Verlag New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.