×

Structure of the centre manifold of the \(L_1\), \(L_2\) collinear libration points in the restricted three-body problem. (English) Zbl 1451.70021

Summary: We present a global analysis of the centre manifold of the collinear points in the circular restricted three-body problem. The phase-space structure is provided by a family of resonant 2-DOF Hamiltonian normal forms. The near \(1:1\) commensurability leads to the construction of a detuned Birkhoff-Gustavson normal form. The bifurcation sequences of the main orbit families are investigated by a geometric theory based on the reduction of the symmetries of the normal form, invariant under spatial mirror symmetries and time reversion. This global picture applies to any values of the mass parameter.

MSC:

70F07 Three-body problems

References:

[1] Arnol���d, V.I.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1989) · Zbl 0692.70003
[2] Baoyin, H., McInnes, C.R.: Solar Sail halo orbits at the Sun-Earth artificial \[L_1\] L1 point. Celest. Mech. Dyn. Astron. 94, 155-171 (2006) · Zbl 1125.70020
[3] Bucciarelli, S., Ceccaroni, M., Celletti, A., Pucacco, G.: Qualitative and analytical results of the bifurcation thresholds to halo orbits. Ann. Mat. Pura Appl. 195, 489-512 (2016) · Zbl 1344.70021
[4] Ceccaroni, M., Celletti, A., Pucacco, G.: Halo orbits around the collinear points of the restricted three-body problem. Phys. D 317, 28-42 (2016) · Zbl 1364.70022
[5] Celletti, A., Pucacco, G., Stella, D.: Lissajous and Halo orbits in the restricted three-body problem. J. Nonlinear Sci. 25(2), 343-370 (2015) · Zbl 1344.70022
[6] Cicogna, G., Gaeta, G.: Symmetry and Perturbation Theory in Nonlinear Dynamics. Springer, Berlin (1999) · Zbl 1059.37044
[7] Cushman, R.H., Bates, L.M.: Global Aspects of Classical Integrable Systems. Birkhauser, Basel (1997) · Zbl 0882.58023
[8] Cushman, R.H., Rod, D.L.: Reduction of the semi-simple 1:1 resonance. Phys. D 6, 105-112 (1982) · Zbl 1194.37125
[9] Cushman, R.H., Dullin, H.R., Hanßmann, H., Schmidt, S.: The 1:\[ \pm \]±2 resonance. Regul. Chaotic Dyn. 12, 642-663 (2007) · Zbl 1229.37039
[10] Delshams, A., Gidea, M., Roldan, P.: Arnol’d mechanism of diffusion in the spatial circular restricted three-body problem: a semi-analytical argument. Phys. D 334, 29-48 (2016) · Zbl 1415.70019
[11] Deprit, A.: The Lissajous transformation I: basics. Celest. Mech. Dyn. Astron. 51, 201-225 (1991) · Zbl 0756.70014
[12] Deprit, A., Elipe, A.: The Lissajous transformation II: normalization. Celest. Mech. Dyn. Astron. 51, 227-250 (1991) · Zbl 0756.70015
[13] Efstathiou, K.: Metamorphoses of Hamiltonian systems with symmetries. In: Lecture Notes in Mathematics, vol. 1864. Springer, Berlin (2005) · Zbl 1069.70002
[14] Farquhar, R.W., Kamel, A.A.: Three-dimensional, periodic, ‘halo’ orbits. Celest. Mech. 7, 458-473 (1973) · Zbl 0258.70011
[15] Farrés, A., Jorba, À., Mondelo, J.M.: Numerical study of the geometry of the phase space of the Augmented Hill Three-Body problem. Celest. Mech. Dyn. Astron. 129, 25-55 (2017) · Zbl 1375.70029
[16] Gelfreich, V., Simó, C.: High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete Contin. Dyn. Syst. Ser. B 10, 511-536 (2008) · Zbl 1169.37013
[17] Giorgilli, A., Galgani, L.: Formal integrals for an autonomous Hamiltonian system near an equilibrium point. Celest. Mech. 17, 267-280 (1978) · Zbl 0387.70022
[18] Gómez, G., Mondelo, J.M.: The dynamics around the collinear equilibrium points of the RTBP. Phys. D 157, 283-321 (2001) · Zbl 0990.70009
[19] Gómez, G. Jorba, À. Masdemont, J., Simó, C.: Dynamics and mission design near libration points. In: Advanced Methods for Collinear Points, vol. III. World Scientific, Singapore, ISBN: 981-02-4211-5 (2001) · Zbl 0969.70002
[20] Guzzo, M.: Personal communication (2018)
[21] Guzzo, M., Lega, E.: Geometric chaos indicators and computations of the spherical hypertube manifolds of the spatial circular restricted three-body problem. Phys. D 373, 38-58 (2018) · Zbl 1392.70004
[22] Hanßmann, H.: Local and semi-local bifurcations in Hamiltonian dynamical systems—results and examples. In: Lecture Notes in Mathematics, vol. 1893. Springer, Berlin (2007) · Zbl 1120.37036
[23] Hanßmann, H., Hoveijn, I.: The 1:1 resonance in Hamiltonian systems. J. Differ. Equ. 266(11), 6963-6984 (2018) · Zbl 1409.37061
[24] Hanßmann, H., Sommer, B.: A degenerate bifurcation in the Hénon-Heiles family. Celest. Mech. Dyn. Astron. 81, 249-261 (2001) · Zbl 0999.70012
[25] Hénon, M.: Vertical stability of periodic orbits in the restricted problem. I. Equal masses. Astron. Astrophys. 28, 415-426 (1973) · Zbl 0272.70023
[26] Henrard, J.: Periodic orbits emanating from a resonant equilibrium. Celest. Mech. 1, 437-466 (1970) · Zbl 0193.25302
[27] Hou, X.Y., Liu, L.: On motions around the collinear libration points in the elliptic restricted three-body problem. Mon. Not. R. Astron. Soc. 415, 3552-3560 (2011)
[28] Howell, K.C.: Three-dimensional, periodic, ‘halo’ orbits. Celest. Mech. 32, 53-71 (1984) · Zbl 0544.70013
[29] Jorba, À., Masdemont, J.: Dynamics in the center manifold of the collinear points of the restricted three body problem. Phys. D 132, 189-213 (1999) · Zbl 0942.70012
[30] Lara, M.: A Hopf variables view of the libration points dynamics. Celest. Mech. Dyn. Astron. 129, 285-306 (2017) · Zbl 1375.70047
[31] Lei, H., Xu, B., Circi, C.: Polynomial expansions of single-mode motions around equilibrium points in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 130, 38 (2018) · Zbl 1391.70022
[32] Marchesiello, A., Pucacco, G.: Universal unfolding of symmetric resonances. Celest. Mech. Dyn. Astron. 119, 357-368 (2014) · Zbl 1298.37042
[33] Marchesiello, A., Pucacco, G.: Bifurcation sequences in the 1:1 Hamiltonian resonance. Int. J. Bifur. Chaos 26, 1630011 (2016) · Zbl 1338.37067
[34] McInnes, C.R.: Solar Sailing: Technology, Dynamics and Mission Applications. Springer Praxis Books/Astronomy and Planetary Sciences, Chichester (2004)
[35] Pucacco, G., Marchesiello, A.: An energy-momentum map for the time-reversal symmetric 1:1 resonance with \[{\mathbb{Z}}_2\times{\mathbb{Z}}_2\] Z2×Z2 symmetry. Phys. D 271, 10-18 (2014) · Zbl 1356.37066
[36] Pucacco, G., Boccaletti, D., Belmonte, C.: Quantitative predictions with detuned normal forms. Celest. Mech. Dyn. Astron. 102, 163-176 (2008) · Zbl 1154.70328
[37] Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22, 241-253 (1980) · Zbl 0465.34028
[38] Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Springer, Berlin (2007) · Zbl 1128.34001
[39] Scuflaire, R.: Stability of axial orbits in analytical galactic potentials. Celest. Mech. Dyn. Astron. 61, 261-285 (1995) · Zbl 0827.70007
[40] Scuflaire, R.: Periodic orbits in analytical planar galactic potentials. Celest. Mech. Dyn. Astron. 71, 203-228 (1998) · Zbl 0938.70009
[41] Simó, C.; Rumyantsev, VV (ed.); Karapetyan, AV (ed.), Effective computations in celestial mechanics and astrodynamics, No. 387, 55-102 (1998), Vienna · Zbl 0920.70003
[42] Tuwankotta, J.M., Verhulst, F.: Symmetry and resonance in Hamiltonian systems. SIAM J. Appl. Math. 61, 1369-1385 (2000) · Zbl 1004.70015
[43] Verhulst, F.: Discrete symmetric dynamical systems at the main resonances with applications to axi-symmetric galaxies. Philos. Trans. R. (Lond.) Soc. Ser. A 290, 435-465 (1979) · Zbl 0418.70011
[44] Walawska, I., Wilczak, D.: Validated numerics for period-tupling and touch-and-go bifurcations of symmetric periodic orbits in reversible systems. Commun. Nonlinear Sci. Numer. Simul. 74, 30-54 (2019) · Zbl 1464.65282
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.