×

Validated numerics for period-tupling and touch-and-go bifurcations of symmetric periodic orbits in reversible systems. (English) Zbl 1464.65282

Summary: We propose a general framework for computer-assisted verification of the presence of symmetry breaking, period-tupling and touch-and-go bifurcations of symmetric periodic orbits for reversible maps. The framework is then adopted to Poincaré maps in reversible autonomous Hamiltonian systems.
In order to justify the applicability of the method, we study bifurcations of halo orbits in the Circular Restricted Three Body Problem. We give a computer-assisted proof of the existence of wide branches of halo orbits bifurcating from \(L_{1,2,3}\)-Lyapunov families and for wide range of mass parameter. For two physically relevant mass parameters we prove, that halo orbits undergo multiple period doubling, quadrupling and third-order touch-and-go bifurcations.

MSC:

65P30 Numerical bifurcation problems
65G20 Algorithms with automatic result verification
37M20 Computational methods for bifurcation problems in dynamical systems
37C27 Periodic orbits of vector fields and flows
70F07 Three-body problems
70M20 Orbital mechanics

References:

[1] Alefeld, G., Inclusion methods for systems of nonlinear equations—the interval newton method and modifications, Topics in validated computations (Oldenburg, 1993). Vol. 5 of Studies in Computational Mathematics North-Holland, Amsterdam, 7-26 (1994) · Zbl 0822.65029
[2] Arioli, G., Periodic orbits, symbolic dynamics and topological entropy for the restricted 3-body problem, Comm Math Phys, 231, 1, 1-24 (2002) · Zbl 1016.70007
[3] The astronomical almanac. http://asa.usno.navy.mil/static/files/2018/Astronomical_Constants_2018.pdf; The astronomical almanac. http://asa.usno.navy.mil/static/files/2018/Astronomical_Constants_2018.pdf
[4] Abad A, Barrio R, Blesa F, Rodríguez M. Algorithm 924: TIDES, a taylor series integrator for differential equations. ACM Trans Math Softw 39(1):5.; Abad A, Barrio R, Blesa F, Rodríguez M. Algorithm 924: TIDES, a taylor series integrator for differential equations. ACM Trans Math Softw 39(1):5. · Zbl 1295.65138
[5] Barrio, R.; Blesa, F.; Serrano, S., Bifurcations and chaos in hamiltonian systems, Int J Bif Chaos, 20, 1293-1319 (2010) · Zbl 1193.65214
[6] Burgos-Garcia J, Lessard JP, James JDM. Celest Mech Dyn Astr (2019) 131: 2. https://doi.org/10.1007/s10569-018-9879-8; Burgos-Garcia J, Lessard JP, James JDM. Celest Mech Dyn Astr (2019) 131: 2. https://doi.org/10.1007/s10569-018-9879-8
[7] van den Berg, J. B.; Lessard, J. P.; Mischaikow, K., Global smooth solution curves using rigorous branch following, Math Comput, 79, 1565-1584 (2010) · Zbl 1206.37045
[8] Breden, M.; Lessard, J. P.; Vanicat, M., Global bifurcation diagram of steady states of systems of PDEs via rigorous numerics: a 3-component reaction-diffusion system, Acta Appl Math, 128, 113-152 (2013) · Zbl 1277.65088
[9] Wilczak, D.; Barrio, R., Systematic computer-assisted proof of branches of stable elliptic periodic orbits and surrounding invariant tori, SIAM J App Dyn Sys, 16, 1618-1649 (2017) · Zbl 1376.65149
[10] Computer assisted proofs in dynamics. a C++ package for rigorous numerics. http://capd.ii.uj.edu.pl; Computer assisted proofs in dynamics. a C++ package for rigorous numerics. http://capd.ii.uj.edu.pl
[11] Capiński, M. J., Computer assisted existence proofs of Lyapunov orbits at l2 and transversal intersections of invariant manifolds in the jupiter-sun PCR3BP, SIAM J Appl Dyn Syst, 11, 4, 1723-1753 (2012) · Zbl 1264.37008
[12] Capiński, M. J.; Roldan, P., Existence of a center manifold in a practical domain around l1 in the restricted three body problem, SIAM J Appl Dyn Syst, 11, 285-318 (2012) · Zbl 1235.37028
[13] Chow, S. N.; Hale, J., Methods of bifurcation theory (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0487.47039
[14] Ceccaroni, M.; Celletti, A.; Pucacco, G., Halo orbits around the collinear points of the restricted three-body problem, Physica D, 317, 28-42 (2016) · Zbl 1364.70022
[15] Celletti, A.; Pucacco, G.; Stella, D., Lissajous and halo orbits in the restricted three-body problem, J Non Sci, 25, 343-370 (2015) · Zbl 1344.70022
[16] Ciocci, M. C.; Vanderbauwhede, A., Bifurcation of periodic points in reversible diffeomorphisms, Proceedings of the sixth international conference on difference equations: new progress in difference equations, 75-93 (2004) · Zbl 1063.37045
[17] Dhooge, A.; Govaerts, W. J.F.; Kuznetsov, Y. A., MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans Math Soft, 29, 141-164 (2003) · Zbl 1070.65574
[18] Doedel, E. J., AUTO: Software for continuation and bifurcation problems in ordinary differential equations (1986), Applied Mathematics, California Institute of Technology: Applied Mathematics, California Institute of Technology Pasadena, CA, Technical report
[19] Doedel, E. J.; Romanov, V. A.; Paffenroth, R. C.; Keller, H. B.; Dichmann, D. J.; Galán-Vioque, J.; Vanderbauwhede, A., Elemental periodic orbits associated with the libration points in the circular restricted 3-body problem, Int J Bif Chaos, 17, 2625-2677 (2007) · Zbl 1139.70006
[20] Gameiro, M.; Lessard, J. P.; Mischaikow, K., Validated continuation over large parameter ranges for equilibria of PDEs, Math Comput Simul, 79, 1368-1382 (2008) · Zbl 1166.65379
[21] Gómez, G.; Mondelo, J. M., The dynamics around the collinear equilibrium points of the RTBP, Physica D, 157, 283-321 (2001) · Zbl 0990.70009
[22] Howell, K. C., Three-dimensional, periodic, halo orbits, Celestial Mech, 32, 53-71 (1984) · Zbl 0544.70013
[23] Jorba, A.; Zou, M., A software package for the numerical integration of ODE by means of high-order taylor methods, Exp Math, 14, 99-117 (2005) · Zbl 1108.65072
[24] Kapela, T., N-BODY Choreographies with a reflectional symmetry - computer assisted existence proofs, EQUADIFF 2003, Proceedings of the international conference on differential equations, Hasselt, Belgium, 999-1005 (2003)
[25] Kapela, T.; Zgliczyński, P., The existence of simple choreographies for the n-body problem - a computer assisted proof, Nonlinearity, 16, 1899-1918 (2003) · Zbl 1060.70023
[26] Koon, W. S.; Lo, M. W.; Marsden, J.; Ross, S. D., Dynamical systems, the three-body problem and space mission design (2007), Springer-Verlag: Springer-Verlag New York
[27] Kuznetsov, Y. A.; Levitin, V. V., CONTENT: a multiplatform continuation environment (1996), CWI: CWI Amsterdam, The Netherlands
[28] Kokubu, H.; Wilczak, D.; Zgliczyński, P., Rigorous verification of cocoon bifurcations in the michelson system, Nonlinearity, 20, 2147-2174 (2007) · Zbl 1126.37035
[29] Lamb, J. S.W., Reversing symmetries in dynamical systems Phd thesis (1994), Universiteit van Amsterdam
[30] Lessard, J. P., Rigorous verification of saddle-node bifurcations in ODEs, Indagationes Mathematicae, 27, 1013-1026 (2016) · Zbl 1351.34045
[31] Lessard, J. P.; Sander, E.; Wanner, T., Rigorous continuation of bifurcation points in the diblock copolymer equation, J Comput Dyn, 4, 71-118 (2017) · Zbl 1404.35030
[32] Michelson, D., Steady solutions of the kuramoto – sivashinsky equation, Physica D, 19, 89-111 (1986) · Zbl 0603.35080
[33] Milnor, J., Topology from the differentiable viewpoint (1997), Princeton University Press · Zbl 1025.57002
[34] Moore, R. E., Interval analysis (1966), Prentice Hall: Prentice Hall Englewood Cliffs, N.J. · Zbl 0176.13301
[35] Falkner, V. M.; Skan, S. W., Some approximate solutions of the boundary layer equations, Phil Mag, 12, 865-896 (1931) · JFM 57.1110.02
[36] Fousse, L.; Hanrot, G.; Lefèvre, V.; Pélissier, P.; Zimmermann, P., MPFR: A multiple-precision binary floating-point library with correct rounding, ACM Trans Math Softw, 33, 13 (2007) · Zbl 1365.65302
[37] Muoz-Almaraz, F. J.; Freire, E.; Galn, J.; Doedel, E.; Vanderbauwhede, A., Continuation of periodic orbits in conservative and hamiltonian systems, Phys D, 181, 1-38 (2003) · Zbl 1024.37037
[38] Net, M.; Sánchez, J., Continuation of bifurcations of periodic orbits for large-scale systems, SIAM J App Dyn Sys, 14, 674-698 (2015) · Zbl 1370.37101
[39] Neumeier, A., Interval methods for systems of equations (1990), Cambrigde University Press · Zbl 0715.65030
[40] Pitjeva, E. V.; Standish, E. M., Proposals for the masses of the three largest asteroids, the moon-earth mass ratio and the astronomical unit, Celest Mech Dyn Astr, 103, 365-372 (2009) · Zbl 1223.70050
[41] Pilarczyk, P., Computer assisted method for proving existence of periodic orbits, Topol Methods Nonlinear Anal, 13, 365-377 (1999) · Zbl 0953.34029
[42] G. Pucacco. private communication.; G. Pucacco. private communication.
[43] Rössler, O. E., An equation for continuous chaos, Phys Lett A, 57, 5, 397-398 (1976) · Zbl 1371.37062
[44] Szebehely, V., Theory of orbits: the restricted problem of three bodies (2013), Academic Press
[45] Stoffer, D.; Kirchgraber, U., Possible chaotic motion of comets in the sun jupiter system - an efficient computer-assisted approach, Nonlinearity, 17, 281-300 (2004) · Zbl 1080.70006
[46] Walawska, I.; Wilczak, D., An implicit algorithm for validated enclosures of the solutions to variational equations for ODEs, App Math Comp, 291C, 303-322 (2016) · Zbl 1410.65259
[47] Wilczak D, personal homepage. http://www.ii.uj.edu.pl/ wilczak/papers/halo/supplement.tgz; Wilczak D, personal homepage. http://www.ii.uj.edu.pl/ wilczak/papers/halo/supplement.tgz
[48] Wilczak, D., Chaos in the Kuramoto-Sivashinsky equations – a computer-assisted proof, J Diff Eq, 194, 433-459 (2003) · Zbl 1050.37017
[49] Wilczak, D.; Zgliczyński, P., Heteroclinic connections between periodic orbits in planar restricted circular three body problem - a computer assisted proof, Commun Math Phys, 234, 37-75 (2003) · Zbl 1055.70005
[50] Wilczak, D.; Zgliczyński, P., Heteroclinic connections between periodic orbits in planar restricted circular three body problem. part II, Commun Math Phys, 259, 561-576 (2005) · Zbl 1133.70005
[51] Wilczak, D.; Zgliczyński, P., Period doubling in the Rössler System - a computer assisted proof, Found Comp Math, 9, 611-649 (2009) · Zbl 1177.37083
[52] Wilczak, D.; Zgliczyński, P., Computer assisted proof of the existence of homoclinic tangency for the Hénon map and for the forced-damped pendulum, SIAM J Appl Dyn Syst, 8, 4, 1632-1663 (2009) · Zbl 1187.37115
[53] Wilczak, D.; Zgliczyński, P., \(C^r\)-Lohner algorithm, Schedae Inform, 20, 9-46 (2011)
[54] Wulff, C.; Schebesch, A., Numerical continuation of symmetric periodic orbits, SIAM J App Dyn Sys, 5, 435-475 (2006) · Zbl 1210.37034
[55] Zgliczyński, P., Steady states bifurcations for the kuramoto-sivashinsky equation - a computer assisted proof, J Comput Dyn, 2, 95-142 (2015) · Zbl 1326.35029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.