×

A Hopf variables view on the libration points dynamics. (English) Zbl 1375.70047

Summary: The dynamics about the libration points of the Hill problem is investigated analytically. In particular, the use of perturbation theory allows to reduce the problem to a one degree of freedom Hamiltonian depending on two dynamical parameters. The invariant manifolds structure of the Hill problem is then disclosed, yet accurate computations are limited to energy values close to that of the libration points.

MSC:

70F15 Celestial mechanics

References:

[1] Celletti, A., Pucacco, G., Stella, D.: Lissajous and Halo orbits in the restricted three-body problem. J. Nonlinear Sci. 25, 343-370 (2015) · Zbl 1344.70022 · doi:10.1007/s00332-015-9232-2
[2] Cushman, R.: Geometry of the bifurcations of the normalized reduced Hénon-Heiles family. Proc. R. Soc. Lond. Ser. A 382, 361-371 (1982) · Zbl 0526.58024 · doi:10.1098/rspa.1982.0106
[3] Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1(1), 12-30 (1969) · Zbl 0172.26002 · doi:10.1007/BF01230629
[4] Deprit, A.: The Lissajous transformation. I—basics. Celest. Mecha. Dyn. Astron. 51, 201-225 (1991) · Zbl 0756.70014 · doi:10.1007/BF00051691
[5] Deprit, A., Elipe, A.: The Lissajous transformation. II—normalization. Celest. Mech. Dyn. Astron. 51, 227-250 (1991) · Zbl 0756.70015 · doi:10.1007/BF00051692
[6] Deprit, A., Rom, A.: The main problem of artificial satellite theory for small and moderate eccentricities. Celest. Mech. 2(2), 166-206 (1970) · Zbl 0199.60101 · doi:10.1007/BF01229494
[7] Doedel, E.J., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Galán-Vioque, J., Vanderbauwhede, A.: Computation of periodic solutions of conservative systems with application to the 3-body problem. Int. J. Bifurc. Chaos 13, 1353-1381 (2003) · Zbl 1129.70316 · doi:10.1142/S0218127403007291
[8] Farquhar, R.W., Kamel, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7, 458-473 (1973) · Zbl 0258.70011 · doi:10.1007/BF01227511
[9] Ferraz-Mello, S.: Canonical Perturbation Theories—Degenerate Systems and Resonance. Vol. 345 of Astrophysics and Space Science Library. Springer, New York (2007) · Zbl 1122.70001
[10] García Yárnoz, D., Scheeres, D.J., McInnes, C.R.: On the “a” and “g” families of orbits in the Hill problem with solar radiation pressure and their application to asteroid orbiters. Celest. Mech. Dyn. Astron. 121, 365-384 (2015) · doi:10.1007/s10569-015-9604-9
[11] Giorgilli, A., Delshams, A., Fontich, E., Galgani, L., Simó, C.: Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem. J. Differ. Equ. 77, 167-198 (1989) · Zbl 0675.70027 · doi:10.1016/0022-0396(89)90161-7
[12] Giorgilli, A., Galgani, L.: Formal integrals for an autonomous Hamiltonian system near an equilibrium point. Celest. Mech. 17, 267-280 (1978) · Zbl 0387.70022 · doi:10.1007/BF01232832
[13] Gómez, G., Jorba, A., Masdemont, J., Simó, C.: Study Refinement of Semi-analytical Halo Orbit Theory. Technical Report Contract 8625/89/D/MD(SC), European Space Operations Center, Robert-Bosch-Strasse 5, 64293 Darmstadt, Germany (1991)
[14] Gómez, G., Marcote, M., Mondelo, J .M.: The invariant manifold structure of the spatial Hill’s problem. Dyn. Syst. 20(1), 115-147 (2005). doi:10.1080/14689360412331313039 · Zbl 1062.70026 · doi:10.1080/14689360412331313039
[15] Hénon, M.: Numerical exploration of the restricted problem, V. Hill’s case: periodic orbits and their stability. Astron. Astrophys. 1, 223-238 (1969) · Zbl 0177.27703
[16] Hénon, M.: Numerical exploration of the restricted problem. VI. Hill’s case: non-periodic orbits. Astron. Astrophys. 9, 24-36 (1970) · Zbl 0233.70007
[17] Hénon, M.: Vertical stability of periodic orbits in the restricted problem. II. Hill’s case. Astron. Astrophys. 30, 317 (1974) · Zbl 0359.70021
[18] Hénon, M.: New families of periodic orbits in Hill’s problem of three bodies. Celest. Mech. Dyn. Astron. 85, 223-246 (2003) · Zbl 1062.70018 · doi:10.1023/A:1022518422926
[19] Hénon, M., Petit, J.-M.: Series expansion for encounter-type solutions of Hill’s problem. Celest. Mech. 38, 67-100 (1986) · Zbl 0613.70004 · doi:10.1007/BF01234287
[20] Henrard, J.: Periodic orbits emanating from a resonant equilibrium. Celest. Mech. 1, 437-466 (1970) · Zbl 0193.25302 · doi:10.1007/BF01231143
[21] Hill, G.W.: Researches in the Lunar theory. Am. J. Math. 1, 5-26 (1878) · JFM 10.0782.02 · doi:10.2307/2369430
[22] Hopf, H.: Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104, 637-665 (1931) · JFM 57.0725.01 · doi:10.1007/BF01457962
[23] Hori, G.: Theory of general perturbation with unspecified canonical variables. Pub. Astron. Soc. Jpn. 18(4), 287-296 (1966)
[24] Jorba, À., Masdemont, J.: Dynamics in the center manifold of the collinear points of the restricted three body problem. Phys. D Nonlinear Phenom. 132, 189-213 (1999) · Zbl 0942.70012 · doi:10.1016/S0167-2789(99)00042-1
[25] Kasdin, N.J., Gurfil, P., Kolemen, E.: Canonical modelling of relative spacecraft motion via epicyclic orbital elements. Celest. Mech. Dyn. Astron. 92, 337-370 (2005) · Zbl 1129.70333 · doi:10.1007/s10569-004-6441-7
[26] Kummer, M.: On resonant non linearly coupled oscillators with two equal frequencies. Commun. Math. Phys. 48, 53-79 (1976). http://projecteuclid.org/euclid.cmp/1103899811 · Zbl 0321.58017
[27] Lara, M.: Simplified equations for computing science orbits around planetary satellites. J. Guid. Control Dyn. 31(1), 172-181 (2008) · doi:10.2514/1.31107
[28] Lara, M., Palacián, J., Russell, R.: Mission design through averaging of perturbed Keplerian systems: the paradigm of an Enceladus orbiter. Celest. Mech. Dyn. Astron. 108(1), 1-22 (2010). doi:10.1007/s10569-010-9286-2 · Zbl 1223.70047 · doi:10.1007/s10569-010-9286-2
[29] Lara, M., Palacián, J.F., Yanguas, P., Corral, C.: Analytical theory for spacecraft motion about Mercury. Acta Astronaut. 66(7-8), 1022-1038 (2010). http://www.sciencedirect.com/science/article/pii/S0094576509004974 · Zbl 0942.70012
[30] Lara, M., Peláez, J.: On the numerical continuation of periodic orbits. An intrinsic, 3-dimensional, differential, predictor-corrector algorithm. Astron. Astrophys. 389, 692-701 (2002) · Zbl 1214.70002 · doi:10.1051/0004-6361:20020598
[31] Lara, M., Russell, R.P., Villac, B.: Fast estimation of stable regions in real models. Meccanica 42(5), 511-515 (2007). doi:10.1007/s11012-007-9060-z · Zbl 1163.70315 · doi:10.1007/s11012-007-9060-z
[32] Lara, M., San-Juan, J.: Dynamic behavior of an orbiter around Europa. J. Guid. Control Dyn. 28(2), 291-297 (2005) · doi:10.2514/1.5686
[33] Lidov, M.L., Yarskaya, M.V.: Integrable cases in the problem of the evolution of a satellite orbit under the joint effect of an outside body and of the noncentrality of the planetary field. Cosm. Res. 12, 139-152 (1974)
[34] Marchesiello, A., Pucacco, G.: Bifurcation sequences in the symmetric 1:1 Hamiltonian resonance. Int. J. Bifurc. Chaos 26, 1630011-1562 (2016) · Zbl 1338.37067 · doi:10.1142/S0218127416300111
[35] Masdemont, J.J.: High-order expansions of invariant manifolds of libration point orbits with applications to mission design. Dyn. Syst. 20(1), 59-113 (2005). doi:10.1080/14689360412331304291 · Zbl 1093.70012 · doi:10.1080/14689360412331304291
[36] Michalodimitrakis, M.: Hill’s problem—families of three-dimensional periodic orbits. I. Astrophys. Sp. Sci. 68, 253-268 (1980) · Zbl 0435.70004 · doi:10.1007/BF00641660
[37] Miller, B.R.: The Lissajous transformation. III—parametric bifurcations. Celest. Mech. Dyn. Astron. 51, 251-270 (1991) · Zbl 0756.70016 · doi:10.1007/BF00051693
[38] Petit, J.-M., Hénon, M.: Satellite encounters. Icarus 66, 536-555 (1986) · doi:10.1016/0019-1035(86)90089-8
[39] Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22, 241-253 (1980) · Zbl 0465.34028 · doi:10.1007/BF01229511
[40] Russell, R.P., Lara, M.: On the design of an Enceladus science orbit. Acta Astronaut. 65(1-2), 27-39 (2009). http://www.sciencedirect.com/science/article/pii/S0094576509000587 · Zbl 0756.70015
[41] San-Juan, J.F., Lara, M., Ferrer, S.: Phase space structure around oblate planetary satellites. J. Guid. Control Dyn. 29, 113-120 (2006) · doi:10.2514/1.13385
[42] Scheeres, D.J., Guman, M.D., Villac, B.F.: Stability analysis of planetary satellite orbiters: application to the Europa orbiter. J. Guid. Control Dyn. 24(4), 778-787 (2001) · doi:10.2514/2.4778
[43] Simó, C., Stuchi, T.J.: Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem. Phys. D Nonlinear Phenom. 140, 1-32 (2000) · Zbl 0963.37052 · doi:10.1016/S0167-2789(99)00211-0
[44] Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press Inc., New York (1967). http://www.sciencedirect.com/science/book/9780123957320 · Zbl 1372.70004
[45] Vashkov’yak, M.A.: On the special particular solutions of a double-averaged Hill’s problem with allowance for flattening of the central planet. Astron. Lett. 22, 207-216 (1996)
[46] Villac, B.F., Scheeres, D.J.: Escaping trajectories in the Hill three-body problem and applications. J. Guid. Control Dyn. 26, 224-232 (2003) · doi:10.2514/2.5062
[47] Zagouras, C., Markellos, V.V.: Three-dimensional periodic solutions around equilibrium points in Hill’s problem. Celest. Mech. 35, 257-267 (1985) · Zbl 0573.70003 · doi:10.1007/BF01227656
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.