×

Universal unfolding of symmetric resonances. (English) Zbl 1298.37042

Summary: We present the analysis of the bifurcation sequences of a family of resonant 2-DOF Hamiltonian systems invariant under spatial mirror symmetry and time reversion. The phase-space structure is investigated by a singularity theory approach based on the construction of a universal deformation of the detuned Birkhoff-Gustavson normal form. Thresholds for the bifurcations of periodic orbits in generic position are computed as asymptotic series in terms of physical parameters of the original system.

MSC:

37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
70K45 Normal forms for nonlinear problems in mechanics
37J20 Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems
37J15 Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010)
Full Text: DOI

References:

[1] Belmonte, C., Boccaletti, D., Pucacco, G.: Stability of axial orbits in galactic potentials. Celest. Mech. Dyn. Astron. 95, 101-116 (2006) · Zbl 1219.70032 · doi:10.1007/s10569-006-9015-z
[2] Belmonte, C., Boccaletti, D., Pucacco, G.: On the orbit structure of the logarithmic potential. Astrophys. J. 669, 202-217 (2007) · doi:10.1086/521423
[3] Broer, H.W., Vegter, G.: Bifurcational aspects of parametric resonance. Dyn. Report. New Ser. 1, 1-51 (1992) · Zbl 0893.58043
[4] Broer, H.W., Chow, S.N., Kim, Y., Vegter, G.: A normally elliptic Hamiltonian bifurcation. Z. Angew. Math. Phys. 44, 389-432 (1993) · Zbl 0805.58047 · doi:10.1007/BF00953660
[5] Broer, H.W., Lunter, G.A., Vegter, G.: Equivariant singularity theory with distinguished parameters: two case studies of resonant Hamiltonian systems. Phys. D 112, 64-80 (1998a) · Zbl 1194.34068 · doi:10.1016/S0167-2789(97)00202-9
[6] Broer, H.W., Hoveijn, I., Lunter, G.A., Vegter, G.: Resonances in a spring pendulum: algorithms for equivariant singularity theory. Nonlinearity 11, 1569-1605 (1998b) · Zbl 0932.37041 · doi:10.1088/0951-7715/11/6/009
[7] Broer, H.W., Hoveijn, I., Lunter, G.A., Vegter, G.: Bifurcations in Hamiltonian Systems: Computing Singularites by Gröbner Bases, Lecture Notes in Mathematics, vol. 1806. Springer, Berlin (2003) · Zbl 1029.37033 · doi:10.1007/b10414
[8] Celletti, A., Pucacco, G., Stella, D.: Lissajous and Halo orbits in the restricted three-body problem. J. Nonlinear Dyn. Syst. (2014) · Zbl 1344.70022
[9] Cicogna, G., Gaeta, G.: Symmetry and Perturbation Theory in Nonlinear Dynamics. Springer, Berlin (1999) · Zbl 1059.37044
[10] Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin (2004) · Zbl 1041.85001
[11] Deprit, A., Elipe, A.: The Lissajous transformation. II. Normalization. Celest. Mech. Dyn. Astron. 51, 227-250 (1991) · Zbl 0756.70015 · doi:10.1007/BF00051692
[12] Ferrer, F., Hanßmann, H., Palacián, J., Yanguas, P.: On perturbed oscillators in 1:1:1 resonance: the case of axially symmetric cubic potentials. J. Geom. Phys. 40, 320-369 (2002) · Zbl 1037.34031 · doi:10.1016/S0393-0440(01)00041-9
[13] Giorgilli, A.: Notes on Exponential Stability of Hamiltonian Systems. Centro di Ricerca Matematica E. De Giorgi, Pisa (2002)
[14] Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, 1, Applied Mathematical Sciences, vol. 51. Springer, Berlin (1985) · Zbl 0607.35004 · doi:10.1007/978-1-4612-5034-0
[15] Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, 2, Applied Mathematical Sciences, vol. 69. Springer, Berlin (1988) · Zbl 0691.58003 · doi:10.1007/978-1-4612-4574-2
[16] Hanßmann, H.: Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems, Lecture Notes in Mathematics 1893. Springer, Berlin (2007) · Zbl 1120.37036
[17] Hanßmann, H., Sommer, B.: A degenerate bifurcation in the Hénon-Heiles family. Celest. Mech. Dyn. Astron. 81, 249-261 (2001) · Zbl 0999.70012 · doi:10.1023/A:1013252302027
[18] Henrard, J.: Periodic orbits emanating from a resonant equilibrium. Celest. Mech. 1, 437 (1969) · Zbl 0193.25302 · doi:10.1007/BF01231143
[19] Kas, A., Schlessinger, M.: On the versal deformation of a complex space with an isolated singularity. Math. Ann. 196, 23-29 (1972) · Zbl 0242.32014
[20] Kummer, M.: On resonant non linearly coupled oscillators with two equal frequencies. Commun. Math. Phys. 48, 53-79 (1976) · Zbl 0321.58017 · doi:10.1007/BF01609411
[21] Marchesiello, A., Pucacco, G.: Relevance of the 1:1 resonance in galactic dynamics. Eur. Phys. J. Plus 126, 104 (2011) · doi:10.1140/epjp/i2011-11104-y
[22] Marchesiello, A., Pucacco, G.: The symmetric 1:2 resonance. Eur. Phys. J. Plus 128, 21 (2013) · doi:10.1140/epjp/i2013-13021-5
[23] Marchesiello, A., Pucacco, G.: Resonances and bifurcations in systems with elliptical equipotentials. MNRAS 428, 2029-2038 (2013) · doi:10.1093/mnras/sts174
[24] Marchesiello, A., Pucacco, G.: Equivariant singularity analysis of the 2:2 resonance. Nonlinearity 27, 43-66 (2014) · Zbl 1418.37091 · doi:10.1088/0951-7715/27/1/43
[25] Martinet, J.: Singularities of Smooth Functions and Maps, LMS Lecture Note Series, vol. 58. Cambridge University Press, Cambridge (1982) · Zbl 0522.58006
[26] Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the N Body Problem, Applied Mathematica Sciences, vol. 90. Springer, Berlin (2009) · Zbl 1179.70002
[27] Montaldi, J., Roberts, M., Stewart, I.: Existence of nonlinear normal modes of symmetric Hamiltonian systems. Nonlinearity 3, 695-730 (1990) · Zbl 0711.58011 · doi:10.1088/0951-7715/3/3/009
[28] Pucacco, G., Boccaletti, D., Belmonte, C.: Quantitative predictions with detuned normal forms. Celest. Mech. Dyn. Astron. 102, 163-176 (2008) · Zbl 1154.70328 · doi:10.1007/s10569-008-9141-x
[29] Pucacco, G.: Resonances and bifurcations in axisymmetric scale-free potentials. MNRAS 399, 340-348 (2009) · doi:10.1111/j.1365-2966.2009.15284.x
[30] Pucacco, G., Marchesiello, A.: An energy-momentum map for the time-reversal symmetric 1:1 resonance with \[{\mathbb{Z}}_2\times{\mathbb{Z}}_2\] Z2×Z2 symmetry. Phys. D 271, 10-18 (2014) · Zbl 1356.37066 · doi:10.1016/j.physd.2013.12.009
[31] Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Springer, Berlin (2007) · Zbl 1128.34001
[32] Schmidt, D.S.: Periodic solutions near a resonant equilibrium of a Hamiltonian system. Celest. Mech. 9, 81-103 (1974) · Zbl 0313.70020 · doi:10.1007/BF01236166
[33] Tuwankotta, J.M., Verhulst, F.: Symmetry and resonance in Hamiltonian systems. SIAM J. Appl. Math. 61, 1369-1385 (2000) · Zbl 1004.70015
[34] Verhulst, F.: Discrete symmetric dynamical systems at the main resonances with applications to axi-symmetric galaxies. Philos. Trans. R. Soc. Lond. Ser. A 290, 435 (1979) · Zbl 0394.34039 · doi:10.1098/rsta.1979.0006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.