×

Propagation principle for parabolic H-measures. (English) Zbl 1446.35275

Summary: We extend results obtained by G. A. Francfort [Prog. Nonlinear Differ. Equ. Appl. 68, 85–110 (2006; Zbl 1129.35002)] to parabolic H-measures developed by N. Antonić and M. Lazar [J. Funct. Anal. 265, No. 7, 1190–1239 (2013; Zbl 1286.35009)]. The well known theory of pseudodifferential operators is extended to parabolic classes of symbols and operators and used to obtain results applicable to a wide class of partial differential equations. The main result is the propagation principle which is then applied to the Schrödinger equation and the vibrating plate equation.

MSC:

35S05 Pseudodifferential operators as generalizations of partial differential operators
35K10 Second-order parabolic equations
35K25 Higher-order parabolic equations
35Q41 Time-dependent Schrödinger equations and Dirac equations
46G10 Vector-valued measures and integration
Full Text: DOI

References:

[1] Antonić, N., H-measures applied to symmetric systems, Proc. R. Soc. Edinb., 126A, 1133-1155 (1996) · Zbl 0881.35023 · doi:10.1017/S0308210500023325
[2] Antonić, N.; Lazar, M., H-measures and variants applied to parabolic equations, J. Math. Anal. Appl., 343, 207-225 (2008) · Zbl 1139.35310 · doi:10.1016/j.jmaa.2007.12.077
[3] Antonić, N.; Lazar, M., Parabolic variant of H-measures in homogenisation of a model problem based on Navier-Stokes equation, Nonlinear Anal. B: Real World Appl., 11, 4500-4512 (2010) · Zbl 1254.35016 · doi:10.1016/j.nonrwa.2008.07.010
[4] Antonić, N.; Lazar, M., Parabolic H-measures, J. Funct. Anal., 265, 1190-1239 (2013) · Zbl 1286.35009 · doi:10.1016/j.jfa.2013.06.006
[5] Antonić, N., Mitrović, D.: \(H\)-distributions: an extension of \(H\)-measures to a \({\rm L}^p-{\rm L}^q\) setting. Abstr. Appl. Anal. 2011 Article ID 901084, 12 (2011) · Zbl 1229.42014
[6] Bényi, Á.; Bownik, M., Anisotropic classes of homogeneous pseudodifferential symbols, Stud. Math., 200, 1, 41-66 (2010) · Zbl 1215.47038 · doi:10.4064/sm200-1-3
[7] Boggiatto, P.; Fabio, N., Non-commutative residues for anisotropic pseudo-differential operators in \(\mathbb{R}^n \), J. Funct. Anal., 203, 2, 305-320 (2003) · Zbl 1037.35114 · doi:10.1016/S0022-1236(03)00194-0
[8] Burq, N.; Gérard, P., Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris Sér. I Math., 325, 7, 749-752 (1997) · Zbl 0906.93008 · doi:10.1016/S0764-4442(97)80053-5
[9] Dehman, B.; Léautaud, M.; Le Rousseau, J., Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal., 211, 1, 113-187 (2014) · Zbl 1290.35278 · doi:10.1007/s00205-013-0670-4
[10] Dautray, R.; Lions, J-L, Mathematical Analysis and Numerical Aethods for Science and Technology, 1-6 (1992), Berlin: Springer, Berlin · Zbl 0755.35001
[11] Erceg, M.; Ivec, I., Second commutation lemma for fractional H-measures, J. Pseudo-Differ. Oper. Appl., 9, 3, 589-613 (2018) · Zbl 1397.35332 · doi:10.1007/s11868-017-0207-y
[12] Francfort, Ga, An Introduction to H-Measures and Their Applications. Variational Problems in Materials Science, 85-110 (2006), Basel: Birkhäuser, Basel · Zbl 1129.35002
[13] Gérard, P., Microlocal defect measures, Comm. Partial Diff. Eq., 16, 1761-1794 (1991) · Zbl 0770.35001 · doi:10.1080/03605309108820822
[14] Gérard, P.: Mesures semi-classiques et ondes de Bloch. Sem. EDP 1990-91 (exp. \( \text{n}^\circ\) XVI), Ecole Polytechnique, Palaiseau (1991)
[15] Hörmander, L.: The Analysis of Linear Partial Differential Operators I-IV, Springer (1985-90) · Zbl 0612.35001
[16] Lazar, M., Exploring limit behaviour of non-quadratic terms via H-measures. Application to small amplitude homogenisation, Appl. Anal., 96, 16, 2832-2845 (2016) · Zbl 1386.35015 · doi:10.1080/00036811.2016.1248422
[17] Lazar, M.; Zuazua, E., Averaged control and observation of parameter-depending wave equations, C, R. Acad. Sci. Paris, Ser. I, 352, 6, 497-502 (2014) · Zbl 1302.35043 · doi:10.1016/j.crma.2014.04.007
[18] Lazar, M.; Mitrović, D., Velocity averaging—a general framework, Dyn. Partial Differ. Equ., 9, 239-260 (2012) · Zbl 1267.35111 · doi:10.4310/DPDE.2012.v9.n3.a3
[19] Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications I-III, Springer (1972-1973) · Zbl 0227.35001
[20] Lions, P-L; Paul, T., Sur les mesures de Wigner, Revista Mat. Iberoamericana, 9, 553-618 (1993) · Zbl 0801.35117 · doi:10.4171/RMI/143
[21] Mitrović, D.; Ivec, I., A generalization of H-measures and application on purely fractional scalar conservation laws, Comm. Pure Appl. Anal., 10, 6, 1617-1627 (2011) · Zbl 1228.35145 · doi:10.3934/cpaa.2011.10.1617
[22] Nicola, F., Hörmander’s Inequality for anisotropic pseudo-differential operators, J. Partial Differ. Equ., 15, 4, 49-64 (2002) · Zbl 1290.35359
[23] Xavier, Sr, Elementary introduction to the theory of pseudodifferential operators (1991), Boca Raton: CRC Press, Boca Raton · Zbl 0847.47035
[24] Tartar, L., H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. R. Soc. Edinb., 115A, 103-108 (1990) · Zbl 0774.35008
[25] Tsutsumi, C., The Fundamental Solution for a Parabolic Pseudo-Differential Operator and Parametrices for Degenerate Operators, Proc. Jpn. Acad., 51, 103-108 (1975) · Zbl 0321.35068 · doi:10.3792/pja/1195518695
[26] Man, W., Wong: An Introduction to Pseudo-Differential Operators (1999), Singapore: World Scientific, Singapore · Zbl 0926.35167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.