×

Non-commutative residues for anisotropic pseudo-differential operators in \(\mathbb R^n\). (English) Zbl 1037.35114

The authors define a noncommutative residue for the algebra of classical anisotropic pseudodifferential operators on \({\mathbb R}^n\) modulo regularizing operators. The pseudodifferential operators have symbols \(a(z)\in C^\infty({\mathbb R}^{2n})\) of class \(\Gamma^{\mu,M}({\mathbb R}^{2n})\), where \(\mu\in{\mathbb R}\) and \(M\) is a given \(2n\)-tuple of rational numbers \(>1\), if \(| \partial_z^\alpha(z)| \leq C_\alpha(1+| z| _M)^{\mu-\langle\alpha,M\rangle}\) uniformly for \(z\in{\mathbb R}^{2n}\) with \(| z| _M:=\sum_{i=1}^{2n}| z_i| ^{1/M_i}\) and \(\langle\alpha,M\rangle:= \sum_{i=1}^{2n}\alpha_i M_i\). The trace is defined by \(\text{ Res\; Op}(a)=\int_{{\mathbb S}^{2n-1}} a_{-| M| }(z)j^*\sigma\), where \(a_{-| M| }(z)\) is the term of quasi-homogeneity degree \(-| M| :=-(M_1+\cdots+M_{2n})\) in the expansion of \(a\), and \(j^*\sigma\) is a particular \((2n-1)\)-form on \({\mathbb S}^{2n-1}\). By means of the Weyl formula, it is shown that this trace coincides with the Dixmier trace on operators of order \(-| M| \). The proof highlights the differential-topology aspects of the problem and the relation between the uniqueness of the trace and the fact that the homology group \(H_{2n-1}({\mathbb R}^{2n}\setminus{0})\) has rank 1.

MSC:

35S05 Pseudodifferential operators as generalizations of partial differential operators
47G30 Pseudodifferential operators
46L89 Other “noncommutative” mathematics based on \(C^*\)-algebra theory
Full Text: DOI

References:

[1] Boggiatto, P.; Buzano, E., Spectral asymptotic for multi-quasi-elliptic operators in \(R^n\), Ann. Scuola Norm. Pisa, Cl. Sci., 24, 4, 511-536 (1997) · Zbl 0897.35056
[2] Boggiatto, P.; Buzano, E.; Rodino, L., Global Hypoellipticity and Spectral Theory (1996), Akademie Verlag: Akademie Verlag Berlin · Zbl 0878.35001
[3] Brylinski, J. L.; Getzler, E., The homology of algebras of pseudo-differential symbols and the noncommutative residue, K-Theory, 1, 385-403 (1987) · Zbl 0646.58026
[4] Connes, A., The action functional in non-commutative geometry, Comm. Math. Phys., 117, 673-683 (1988) · Zbl 0658.53068
[5] Connes, A., Noncommutative Geometry (1994), Academic Press: Academic Press New York, London, Tokyo · Zbl 1106.58004
[6] Connes, A.; Moscovici, H., The local index formula in noncommutative geometry, Geom. Funct. Anal., 5, 174-243 (1995) · Zbl 0960.46048
[7] Dixmier, J., Existence de traces nonnormales, C. R. Acad. Sci. Paris, Série A, 262, 1107-1108 (1966) · Zbl 0141.12902
[8] Fedosov, B. V.; Golse, F.; Leichtnam, E.; Schrohe, E., Le résidue non commutatif pour les variétés à bord, C. R. Acad. Sci. Paris, Série I, 320, 669-674 (1995) · Zbl 0841.58060
[9] Fedosov, B. V.; Golse, F.; Leichtnam, E.; Schrohe, E., The noncommutative residue for manifolds with boundary, J. Funct. Anal., 142, 1, 1-31 (1996) · Zbl 0877.58005
[10] Grubb, G.; Schrohe, E., Trace expansions and the noncommutative residue for manifolds with boundary, J. Reine Angew. Math., 536, 167-207 (2001) · Zbl 0980.58017
[11] Guillemin, V., A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues, Adv. in Math., 55, 131-160 (1985) · Zbl 0559.58025
[12] Guillemin, V., Residue traces for certain algebras of Fourier integral operators, J. Funct. Anal., 115, 391-417 (1993) · Zbl 0791.35162
[13] B. Helffer, Théorie Spectrale pour des Opérateur Globalement Elliptiques, Soc. Math. de France, Astéristique, Vol. 112, 1984.; B. Helffer, Théorie Spectrale pour des Opérateur Globalement Elliptiques, Soc. Math. de France, Astéristique, Vol. 112, 1984. · Zbl 0541.35002
[14] B. Helffer, D. Robert, Comportement asymptotique précis du spectre d’opérateurs globalement elliptiques dans \(R^n\); B. Helffer, D. Robert, Comportement asymptotique précis du spectre d’opérateurs globalement elliptiques dans \(R^n\)
[15] Helffer, B.; Robert, D., Propriétés asymptotiques du spectre d’opérateurs pseudodifférentiels sur \(R^n\), Comm. Partial Differential Equations, 7, 795-882 (1982) · Zbl 0501.35081
[16] Helffer, B.; Robert, D., Comportement semi-classique du spectre des hamiltoniens quantiques hypoelliptiques, Ann. Scuola Norm. Pisa, Cl. Sc., 9, 405-431 (1982) · Zbl 0507.35066
[17] Hörmander, L., On the asymptotic distribution of the eigenvalues of pseudo-differential operators in \(R^n\), Arkiv. för Mat., 17, 297-313 (1979) · Zbl 0436.35064
[18] Hörmander, L., The Analysis of Linear Partial Differential Operators III (1983 1985), Springer: Springer Berlin
[19] C. Kassel, Le residue non commutatif [d’apres M. Wodzicki], Astérisque 177-178 (1989) 199-229; Séminaire Bourbaki, 41ème année, Exposs no. 708, 1988-89.; C. Kassel, Le residue non commutatif [d’apres M. Wodzicki], Astérisque 177-178 (1989) 199-229; Séminaire Bourbaki, 41ème année, Exposs no. 708, 1988-89. · Zbl 0701.58054
[20] Lauter, R.; Moroianu, S., Homology of pseudo-differential operators on manifolds with fibered boundaries, J. Reine Angew. Math., 547, 207-234 (2002) · Zbl 0994.58017
[21] Lesch, M., On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols, Ann. Glob. Anal. Geom., 17, 2, 151-187 (1999) · Zbl 0920.58047
[22] Melrose, R.; Nistor, V., Homology of pseudodifferential operators I, Manifolds with boundary (1996), preprint, MIT
[23] A. Mohamed, Théorie spectrale pour des opérateurs pseudodifférentiels, Thèse à Nantes, 1983.; A. Mohamed, Théorie spectrale pour des opérateurs pseudodifférentiels, Thèse à Nantes, 1983.
[24] Mohamed, A., Comportement asymptotique, avec estimation du reste, des valeurs propres d’une classe d’opérateus pseudo-defférentiels sur \(R^n\), Math. Nach., 140, 127-186 (1989) · Zbl 0689.35067
[25] Nest, R.; Schrohe, E., Dixmier’s trace for boundary value problems, Manuscripta Math., 96, 2, 203-218 (1998) · Zbl 0914.35158
[26] Nicola, F., Trace functionals for a class of pseudo-differential operators in \(R^n\), Math. Phys. Anal. Geom., 6, 89-105 (2003) · Zbl 1033.47034
[27] Ponge, R., Calcul fonctionnel sous-elliptique et résidu non commutativf sur les varit́és de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math., 332, 7, 611-614 (2001) · Zbl 0989.58013
[28] Ponge, R., Géometrie spectrale et formules d’indices locales pour les variétés CR et contact, C. R. Acad. Sci. Paris Sér. I Math., 332, 8, 735-738 (2001) · Zbl 0987.58012
[29] Robert, D., Propriétés spectrales d’opérateurs pseudo-différentels, Comm. Partial Differential Equations, 3, 755-826 (1978) · Zbl 0392.35056
[30] E. Schrohe, Traces on the cone algebra with asymptotics, Actes des Journées de Saint Jean de Monts, Journées Equations aux Dérivées Partielles 1996, Ecole Polytechnique, Palaiseau 1996.; E. Schrohe, Traces on the cone algebra with asymptotics, Actes des Journées de Saint Jean de Monts, Journées Equations aux Dérivées Partielles 1996, Ecole Polytechnique, Palaiseau 1996. · Zbl 0881.58067
[31] Schrohe, E., Noncommutative residues and manifolds with conical singularities, J. Funct. Anal., 150, 146-174 (1997) · Zbl 0903.58057
[32] Shubin, M. A., Pseudodifferential Operators and Spectral Theory (1987), Springer: Springer Berlin · Zbl 0616.47040
[33] M. Wodzicki, Spectral asymmetry and noncommutative residue, Thesis, Stekhlov Institute of Mathematics, Moscow, 1984.; M. Wodzicki, Spectral asymmetry and noncommutative residue, Thesis, Stekhlov Institute of Mathematics, Moscow, 1984.
[34] Wodzicki, M., Noncommutative residue, Chapter I. Fundamentals, (Manin, Yu. I., K-theory, Arithmetic and Geometry. K-theory, Arithmetic and Geometry, Lecture Notes in Mathematics, Vol. 1289 (1987), Springer: Springer Berlin, Heidelberg, New York), 320-399 · Zbl 0649.58033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.