×

One-scale H-distributions and variants. (English) Zbl 1518.35043

Summary: H-measures and semiclassical (Wigner) measures were introduced in early 1990s and since then they have found numerous applications in problems involving \(\mathrm{L}^2\) weakly converging sequences. Although they are similar objects, neither of them is a generalisation of the other, the fundamental difference between them being the fact that semiclassical measures have a characteristic length, while H-measures have none. Recently introduced objects, the one-scale H-measures, generalise both of them, thus encompassing properties of both. The main aim of this paper is to fully develop this theory to the \(\mathrm{L}^p\) setting, \(p\in (1,\infty)\), by constructing one-scale H-distributions, a generalisation of one-scale H-measures and, at the same time, of H-distributions, a generalisation of H-measures to the \(\mathrm{L}^p\) setting. We also address an alternative approach to \(\mathrm{L}^p\) extension of semiclassical measures via the Wigner transform, introducing new type of objects (semiclassical distributions). Furthermore, we derive a localisation principle in a rather general form, suitable for problems with a characteristic length, as well as those not involving a specific characteristic length, providing some applications.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
35S05 Pseudodifferential operators as generalizations of partial differential operators
42B15 Multipliers for harmonic analysis in several variables
46F05 Topological linear spaces of test functions, distributions and ultradistributions

References:

[1] Aleksić, J.; Mitrović, D., Strong traces for entropy solutions of heterogeneous ultra-parabolic equation, J. Hyperbolic Differ. Eq., 10, 659-676 (2013) · Zbl 1288.35320 · doi:10.1142/S0219891613500239
[2] Ammari, Z.; Falconi, M.; Pawilowski, B., On the rate of convergence for the mean field approximation of Bosonic many-body quantum dynamics, Commun. Math. Sci., 14, 1417-1442 (2016) · Zbl 1385.81013 · doi:10.4310/CMS.2016.v14.n5.a9
[3] Ammari, Z., Nier, F.: Mean Field Limit For Bosons and Infinite Dimensional Phase-Space Analysis. In: Annales Henri Poincaré, vol. 9, pp. 1503-1574 (2008) · Zbl 1171.81014
[4] Antonić, N., H-measures applied to symmetric systems, Proc. R. Soc. Edinb., 126A, 1133-1155 (1996) · Zbl 0881.35023 · doi:10.1017/S0308210500023325
[5] Antonić, N., Burazin, K.: On certain properties of spaces of locally Sobolev functions. In: Drmač, Zlatko, et al. (eds.) Proceedings of the Conference on Applied Mathematics and Scientific Computing, vol. 120, p. 109. Springer (2005) · Zbl 1077.46022
[6] Antonić, N.; Burazin, K.; Jankov, J., Small-amplitude homogenization of elastic plates via H-measures, Z. Angew. Math. Mech., 102, 5, 9 (2022) · Zbl 1535.35014 · doi:10.1002/zamm.202000348
[7] Antonić, N.; Erceg, M.; Lazar, M., One-scale H-measures, J. Funct. Anal., 272, 3410-3454 (2017) · Zbl 1370.35035 · doi:10.1016/j.jfa.2017.01.006
[8] Antonić, N.; Erceg, M.; Mišur, M., Distributions of anisotropic order and applications to H-distributions, Anal. Appl. (Singap.), 19, 801-843 (2021) · Zbl 1477.42010 · doi:10.1142/S0219530520500165
[9] Antonić, N., Erceg, M., Pawilowski, B.: Semiclassical Distribution, p. 4. unpublished note (2017)
[10] Antonić, N.; Ivec, I., On the Hörmander-Mihlin theorem for mixed-norm Lebesgue spaces, J. Math. Anal. Appl., 433, 176-199 (2016) · Zbl 1336.47052 · doi:10.1016/j.jmaa.2015.07.002
[11] Antonić, N.; Lazar, M., H-measures and variants applied to parbolic equations, J. Math. Anal. Appl., 343, 207-225 (2008) · Zbl 1139.35310 · doi:10.1016/j.jmaa.2007.12.077
[12] Antonić, N.; Lazar, M., Parabolic H-measures, J. Funct. Anal., 265, 1190-1239 (2013) · Zbl 1286.35009 · doi:10.1016/j.jfa.2013.06.006
[13] Antonić, N.; Mišur, M.; Mitrović, D., On compactness of commutators of multiplications and Fourier multipliers, Mediterr. J. Math., 15, 170, 13 (2018) · Zbl 1400.42008 · doi:10.1007/s00009-018-1215-8
[14] Antonić, N., Mitrović, D.: \(H\)-Distributions: An Extension of H-Measures to an \(L^p-L^q\) Setting. Abstr. Appl. Anal. Article ID 901084, pp. 12 (2011) · Zbl 1229.42014
[15] Antonić, N.; Mitrović, D.; Palle, Lj, On relationship between H-distributions and microlocal compactness forms, Atti Accad. Naz. Lincei Mat. Appl., 31, 297-318 (2020) · Zbl 1465.46041
[16] Brudnyi, A.; Brudnyi, Y., Methods of Geometric Analysis in Extension and Trace Problems (2012), Berlin: Springer, Berlin · Zbl 1253.46001 · doi:10.1007/978-3-0348-0209-3
[17] Burq, N.; Gérard, P., Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris Sér. I Math., 325, 7, 749-752 (1997) · Zbl 0906.93008
[18] Cardin, F.; Zanelli, L., The geometry of the semiclassical wave front set for Schrödinger eigenfunctions on the torus, Math. Phys. Anal. Geom., 20, 10-20 (2017) · Zbl 1413.35146 · doi:10.1007/s11040-017-9241-5
[19] Carles, R.; Fermanian-Kammerer, C.; Mauser, NJ; Stimming, HP, On the time evolution of Wigner measures for Schrödinger equations, Comm. Pure Appl. Anal., 8, 559-585 (2009) · Zbl 1159.81034 · doi:10.3934/cpaa.2009.8.559
[20] Chabu, V.; Fermanian-Kammerer, C.; Maciá, F., Wigner measures and effective mass theorems, Ann. Henri Lebesgue, 3, 1049-1089 (2020) · Zbl 1452.35018 · doi:10.5802/ahl.54
[21] Dehman, M.; Leautaud, M.; Le Rousseau, J., Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal., 211, 113-187 (2014) · Zbl 1290.35278 · doi:10.1007/s00205-013-0670-4
[22] Dieudonné, J.A.: Treatise on Analysis I-VIII. Academic Press (1969-1993)
[23] Erceg, M.: One-Scale H-Measures and Variants (in Croatian), Ph.D. thesis, University of Zagreb (2016). https://web.math.pmf.unizg.hr/ maerceg/documents/papers/Marko_Erceg_disertacija.pdf
[24] Erceg, M.; Ivec, I., On generalisation of H-measures, Filomat, 31, 5027-5044 (2017) · Zbl 1499.35633 · doi:10.2298/FIL1716027E
[25] Erceg, M.; Ivec, I., Second commutation lemma for fractional H-measures, J. Pseudo Differ. Oper. Appl., 9, 589-613 (2018) · Zbl 1397.35332 · doi:10.1007/s11868-017-0207-y
[26] Erceg, M.; Lazar, M., Characteristic scales of bounded \({\rm L}^2\) sequences, Asymptot. Anal., 109, 171-192 (2018) · Zbl 1522.40001
[27] Erceg, M.; Mišur, M.; Mitrović, D., Velocity averaging for diffusive transport equations with discontinuous flux, J. Lond. Math. Soc., 107, 2, 658-703 (2023) · Zbl 1521.35112 · doi:10.1112/jlms.12694
[28] Erceg, M.; Mitrović, D., Strong traces to degenerate parabolic equations, SIAM J. Math. Anal., 54, 1775-1796 (2022) · Zbl 1485.35274 · doi:10.1137/21M1425530
[29] Evans, L.C.: Weak Convergence Methods for Partial Differential Equations, Regional Conference Series in Mathematics, No. 74., Conference Board of the Mathematical Sciences (1990)
[30] Fermanian-Kammerer, C., Propagation and absorption of concentration effects near shock hypersurfaces for the heat equation, Asymptot. Anal., 24, 107-141 (2000) · Zbl 0979.35058
[31] Fermanian-Kammerer, C.; Gérard, P.; Lasser, C., Wigner measure propagation and conical singularity for general initial data, Arch. Ration. Mech. Anal., 209, 209-236 (2013) · Zbl 1288.35408 · doi:10.1007/s00205-013-0622-z
[32] Francfort, G.A.: An introduction to H-measures and their applications. In: Progress in Nonlinear Differential Equations and their Applications, vol. 68. Birkhäuser (2006) · Zbl 1129.35002
[33] Gérard, P., Microlocal defect measures, Comm. Partial Differ. Equ., 16, 1761-1794 (1991) · Zbl 0770.35001 · doi:10.1080/03605309108820822
[34] Gérard, P.: Mesures semi-classiques et ondes de Bloch, Sem. EDP 1990-91 (exp. \(n^\circ\) XVI), Ecole Polytechnique, Palaiseau (1991)
[35] Gérard, P., Oscillations and concentration effects in semilinear dispersive wave equations, J. Funct. Anal., 141, 60-98 (1996) · Zbl 0868.35075 · doi:10.1006/jfan.1996.0122
[36] Gérard, P.; Markowich, PA; Mauser, NJ; Poupaud, F., Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., L, 323-379 (1997) · Zbl 0881.35099 · doi:10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C
[37] Grafakos, L., Classical Fourier Analysis (2008), Berlin: Springer, Berlin · Zbl 1220.42001 · doi:10.1007/978-0-387-09432-8
[38] Grafakos, L., Modern Fourier Analysis (2009), Berlin: Springer, Berlin · Zbl 1158.42001 · doi:10.1007/978-0-387-09434-2
[39] Gzyl, H., Multidimensional extension of Faa di Bruno’s formula, J. Math. Anal. Appl., 116, 450-455 (1986) · Zbl 0651.05013 · doi:10.1016/S0022-247X(86)80009-9
[40] Holden, H., Karlsen, K.H., Mitrović, D., Panov, E.Yu.: Strong compactness of approximate solutions to degenerate elliptic-hyperbolic equations with discontinuous flux functions. Acta Math. Sci. 29B, 1573-1612 (2009) · Zbl 1212.35166
[41] Hörmander, L.: The Analysis of Linear Partial Differential Operators II. Differential Operators with Constant Coefficients, reprint of the 1983 edition, Springer (2005) · Zbl 1062.35004
[42] Ivec, I.; Lazar, M., Propagation principle for parabolic H-measures, J. Pseudo Differ. Oper. Appl., 11, 467-489 (2020) · Zbl 1446.35275 · doi:10.1007/s11868-019-00289-z
[43] Koch, H.; Tataru, D.; Zworski, M., Semiclassical \(L^p\) estimates, Ann. Henri Poincaré, 8, 5, 885-916 (2007) · Zbl 1133.58025 · doi:10.1007/s00023-006-0324-2
[44] Lazar, M., Exploring limit behaviour of non-quadratic terms via H-measures. Application to small amplitude homogenisation, Appl. Anal., 96, 16, 2832-2845 (2016) · Zbl 1386.35015 · doi:10.1080/00036811.2016.1248422
[45] Lazar, M.; Mitrović, D., Velocity averaging-a general framework, Dyn. Partial Differ. Equ., 9, 239-260 (2012) · Zbl 1267.35111 · doi:10.4310/DPDE.2012.v9.n3.a3
[46] Lazar, M.; Mitrović, D., On an extension of a bilinear functional on \(L^p(\mathbb{R}^n)\times E\) to Bôchner spaces with an application to velocity averaging, C. R. Math. Acad. Sci. Paris, 351, 261-264 (2013) · Zbl 1280.46025 · doi:10.1016/j.crma.2013.04.013
[47] Lazar, M.; Zuazua, E., Averaged control and observation of parameter-depending wave equations, C. R. Acad. Sci. Paris Ser. I, 352, 497-502 (2014) · Zbl 1302.35043 · doi:10.1016/j.crma.2014.04.007
[48] Lee, JM, Introduction to Smooth Manifolds (2013), Berlin: Springer, Berlin · Zbl 1258.53002
[49] Lewin, M.; Nam, PT; Rougerie, N., Derivation of Hartree’s theory for generic mean-field Bose systems, Adv. Math., 254, 570-621 (2014) · Zbl 1316.81095 · doi:10.1016/j.aim.2013.12.010
[50] Lions, PL, The concentration-compactness principle in the calculus of variations. the limit case, parts I, Rev. Mat. Iberoam., 1, 145-201 (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6
[51] Lions, PL, The concentration-compactness principle in the calculus of variations. the limit case, parts II, Rev. Mat. Iberoam., 2, 41-121 (1985) · Zbl 0704.49006
[52] Lions, PL; Paul, T., Sur les mesures de Wigner, Rev. Mat. Iberoam., 9, 553-618 (1993) · Zbl 0801.35117 · doi:10.4171/RMI/143
[53] Melrose, R.B.: Lectures on Pseudodifferential Operators (2006). http://www-math.mit.edu/ rbm/18.157-F05.pdf
[54] Melrose, R.B.: Differential Analysis on Manifolds with Corners, http://www-math.mit.edu/ rbm/book.html · Zbl 0754.58035
[55] Michelangeli, A.; Nam, PT; Olgiati, A., Ground state energy of mixture of Bose gases, Rev. Math. Phys., 31, 2, 1950005 (2019) · Zbl 1418.81104 · doi:10.1142/S0129055X19500053
[56] Mišur, M.; Mitrović, D., On a generalization of compensated compactness in the \(L^p-L^q\) setting, J. Funct. Anal., 268, 1904-1927 (2015) · Zbl 1311.35006 · doi:10.1016/j.jfa.2014.12.008
[57] Mitrović, D.; Ivec, I., A generalization of H-measures and application on purely fractional scalar conservation laws, Commun. Pure Appl. Anal., 10, 1617-1627 (2011) · Zbl 1228.35145 · doi:10.3934/cpaa.2011.10.1617
[58] Panov, E.Yu.: Existence of strong traces for generalized solutions of multidimensional scalar conservation laws. J. Hyperbolic Differ. Equ. 2, 885-908 (2005) · Zbl 1145.35429
[59] Panov, E.Yu.: Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux. Arch. Ration. Mech. Anal. 195, 643-673 (2010) · Zbl 1191.35102
[60] Panov, E.Yu.: Ultraparabolic H-measures and compensated compactness. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 47-62 (2011) · Zbl 1211.35013
[61] Rindler, F., Directional oscillations, concentrations, and compensated compactness via microlocal compactness forms, Arch. Ration. Mech. Anal., 215, 1-63 (2015) · Zbl 1327.35004 · doi:10.1007/s00205-014-0783-4
[62] Schwartz, L.: Théorie des Distibutions, Hermann (1966) · Zbl 0149.09501
[63] Tartar, L., H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs, Proc. R. Soc. Edinb. Sect. A, 115, 193-230 (1990) · Zbl 0774.35008 · doi:10.1017/S0308210500020606
[64] Tartar, L., The General Theory of Homogenization: A Personalized Quest (2009), Berlin: Springer-Verlag, Berlin · Zbl 1188.35004
[65] Tartar, L., Multi-scale H-measures, Discrete Contin. Dyn. Syst. Ser. S, 8, 77-90 (2015) · Zbl 1312.35013
[66] Tréves, F., Topological vector spaces, distributions and kernels (2006), Dover: Dover, Dover · Zbl 1111.46001
[67] Young, LC, Lectures on the Calculus of Variations and Optimal Control (1969), Philadelphia: W. B. Saunders, Philadelphia · Zbl 0177.37801
[68] Zhang, P., Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations (2008), New York: American Mathematical Society, Courant Intitute of Mathematical Sciences, New York · Zbl 1154.35002 · doi:10.1090/cln/017
[69] Zworski, M., Semiclassical Analysis, Graduate Studies in Mathematics (2012), Providence: American Mathematical Society, Providence · Zbl 1252.58001 · doi:10.1090/gsm/138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.