Skip to main content
Log in

Controllability of Two Coupled Wave Equations on a Compact Manifold

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the exact controllability problem on a compact manifold Ω for two coupled wave equations, with a control function acting on one of them only. Action on the second wave equation is obtained through a coupling term. First, when the two waves propagate with the same speed, we introduce the time \({T_{\omega \rightarrow \mathcal{O} \rightarrow \omega}}\) for which all geodesics traveling in Ω go through the control region ω, then through the coupling region \({\mathcal{O}}\), and finally come back in ω. We prove that the system is controllable if and only if both ω and \({\mathcal{O}}\) satisfy the Geometric Control Condition and the control time is larger than \({T_{\omega \rightarrow \mathcal{O} \rightarrow \omega}}\). Second, we prove that the associated HUM control operator is a pseudodifferential operator and we exhibit its principal symbol. Finally, if the two waves propagate with different speeds, we give sharp sufficient controllability conditions on the functional spaces, the geometry of the sets ω and \({\mathcal{O}}\), and the minimal time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau-Boussouira F.: A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems. SIAM J. Control Optim. 42, 871–906 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alabau-Boussouira F.: Controllability of cascade coupled systems of multi-dimensional evolution pde’s by a reduced number of controls. C. R. Acad. Sci. Paris Sér I Math. 350, 577–582 (2012)

    MATH  MathSciNet  Google Scholar 

  3. Alabau-Boussouira F., Léautaud M.: Indirect controllability of locally coupled systems under geometric conditions. C. R. Math. Acad. Sci. Paris 349(7–8), 395–400 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alabau-Boussouira F., Léautaud M.: Indirect controllability of locally coupled wave-type systems and applications. J. Math. Pures Appl. 99, 544–576 (2013)

    MathSciNet  Google Scholar 

  5. Ammar-Khodja F., Benabdallah A., González-Burgos M., de Teresa L.: Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1(3), 267–306 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aronszajn N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9) 36, 235–249 (1957)

    Google Scholar 

  7. Aronszajn N., Krzywicki A., Szarski J.: A unique continuation theorem for exterior differential forms on Riemannian manifolds. Ark. Mat. 4, 417–453 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30, 1024–1065 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burq, N.: Contrôlabilité exacte des ondes dans des ouverts peu réguliers. Asymptot. Anal. 14(2), 157–191 (1997)

    Google Scholar 

  10. Burq, N.: Mesures semi-classiques et mesures de défaut. Astérisque, 245: Exp. No. 826, 4, pp. 167–195, 1997. Séminaire Bourbaki, Vol. 1996/1997

  11. Burq N., Gérard P.: Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 749–752 (1997)

    Article  ADS  MATH  Google Scholar 

  12. Burq, N., Gérard, P.: Contrôle optimal des équations aux dérivées partielles. Cours de l’Ecole Polytechnique, 2002. http://www.math.u-psud.fr/~burq/articles/coursX.pdf

  13. Burq, N., Lebeau, G.: Mesures de défaut de compacité, application au système de Lamé. Ann. Sci. école Norm. Sup. (4), 34(6), 817–870 (2001)

    Google Scholar 

  14. Chazarain, J., Piriou, A.: Introduction to the Theory of Linear Partial Differential Equations. North-Holland, Amsterdam, 1982

  15. Dáger R.: Insensitizing controls for the 1-D wave equation. SIAM J. Control Optim. 45(5), 1758–1768 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dáger, R., Zuazua, E.: Wave propagation, observation and control in 1−d flexible multi-structures, volume 50 of Mathématiques & Applications (Berlin). Springer, Berlin, 2006

  17. Dencker N.: On the propagation of polarization sets for systems of real principal type. J. Funct. Anal. 46(3), 351–372 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dehman B., Lebeau G.: Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim. 48(2), 521–550 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dolecki S., Russell D.L.: A general theory of observation and control. SIAM J. Control Optim. 15(2), 185–220 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ekeland, I., Temam, R.: Analyse convexe et problèmes variationnels. Dunod–Gauthier-Villars, Paris, 1974

  21. Gérard P.: Microlocal defect measures. Commun. Partial Differ. Equ. 16(11), 1761–1794 (1991)

    Article  MATH  Google Scholar 

  22. Hörmander, L. The Analysis of Linear Partial Differential Operators, volume I. Springer-Verlag, Berlin, second edition, (1990)

  23. Hörmander, L.: The Analysis of Linear Partial Differential Operators, volume III. Springer, 1985 (second printing, 1994)

  24. Hörmander, L.: The analysis of linear partial differential operators. IV, volume 275 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin. Fourier integral operators, Corrected reprint of the 1985 original (1994)

  25. Le Rousseau J., Lebeau G.: On Carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations. ESAIM Control Optim. Calc. Var. 18, 712–747 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Léautaud M.: Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems. J. Funct. Anal. 258, 2739–2778 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lebeau, G.: Équation des ondes amorties. In: Algebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993), volume 19 of Math. Phys. Stud., pp. 73–109. Kluwer Academic Publishing, Dordrecht, 1996

  28. Lebeau G., Nodet M.: Experimental study of the HUM control operator for linear waves. Exp. Math. 19(1), 93–120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lebeau G., Zuazua E.: Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ration. Mech. Anal. 148, 179–231 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lerner, N.: Metrics on the Phase Space and Non-Selfadjoint Pseudo-differential Operators. Birkhäuser Verlag, Basel, 2010

  31. Lions, J.-L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, volume 8 of Recherches en Mathématiques Appliquées. Masson, Paris, 1988

  32. Lions, J.-L.: Quelques notions dans l’analyse et le contrôle de systèmes à à données incomplètes. In: Proceedings of the XIth Congress on Differential Equations and Applications/First Congress on Applied Mathematics (Spanish) (Málaga, 1989), pp. 43–54. Univ. Málaga, Málaga, 1990

  33. Miller L.: The control transmutation method and the cost of fast controls. SIAM J. Control Optim. 45(2), 762–772 (2006)

    Article  MathSciNet  Google Scholar 

  34. Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983

  35. Phung K.-D.: Observability and control of Schrödinger equations. SIAM J. Control Optim. 40(1), 211–230 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Phung, K.-D.: Observability of the Schrödinger equation. In: Carleman Estimates and Applications to Uniqueness and Control Theory (Cortona, 1999), volume 46 of Progr. Nonlinear Differential Equations Appl., pp. 165–177. Birkhäuser, Boston, 2001

  37. Phung, K.-D.: Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equation under the Bardos–Lebeau–Rauch geometric control condition. Comput. Math. Appl. 44(10–11), 1289–1296 (2002)

    Google Scholar 

  38. Rauch J., Taylor M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24, 79–86 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  39. Rosier L., de Teresa L.: Exact controllability of a cascade system of conservative equations. C. R. Math. Acad. Sci. Paris 349(5–6), 291–296 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Russell D.L.: A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52, 189–221 (1973)

    MATH  Google Scholar 

  41. Seeley, R.T.: Complex powers of an elliptic operator. In: Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), pp. 288–307. Amer. Math. Soc., Providence, 1967

  42. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory, 2nd edn. Springer, Berlin, 2001

  43. Tartar L.: H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinb. Sect. A 115(3–4), 193–230 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  44. Taylor, M.E.: Pseudodifferential Operators. Princeton University Press, Princeton, 1981

  45. Taylor, M.E.: Pseudodifferential Operators and Nonlinear PDE. Birkhäuser, Boston, 1991

  46. Tebou L.: Locally distributed desensitizing controls for the wave equation. C. R. Math. Acad. Sci. Paris 346(7–8), 407–412 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  47. Zuily, C.: Uniqueness and nonuniqueness in the Cauchy problem, volume 33 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, 1983

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Le Rousseau.

Additional information

Communicated by L. Saint-Raymond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehman, B., Le Rousseau, J. & Léautaud, M. Controllability of Two Coupled Wave Equations on a Compact Manifold. Arch Rational Mech Anal 211, 113–187 (2014). https://doi.org/10.1007/s00205-013-0670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0670-4

Keywords

Navigation