×

Non-abelian tri-vector deformations in \(d = 11\) supergravity. (English) Zbl 1437.83146

Summary: A truncation of the SL(5) Exceptional Field Theory that allows to describe spacetimes of the form \(M_4 \times M_7\) with the 4-form flux on \(M_4\) is constructed. The resulting theory is used to test the recently proposed tri-vector generalisation of Yang-Baxter deformations applied to the \( \mathrm{AdS}_4 \times \mathbb{S}^7\) solution of \(d = 11\) supergravity. We present two new supergravity solutions corresponding to non-abelian non-unimodular tri-vector deformations of \( \mathrm{AdS}_4 \times \mathbb{S}^7\).

MSC:

83E50 Supergravity
81R05 Finite-dimensional groups and algebras motivated by physics and their representations

References:

[1] Delduc, F.; Magro, M.; Vicedo, B., On classical q-deformations of integrable σ-models, JHEP, 11, 192 (2013) · Zbl 1342.81182
[2] F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS_5 × S^5superstring action, Phys. Rev. Lett.112 (2014) 051601 [arXiv:1309.5850] [INSPIRE]. · Zbl 1333.81322
[3] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., Jordanian deformations of the AdS_5 × S^5superstring, JHEP, 04, 153 (2014)
[4] C. Klimčík, Yang-Baxter σ-models and dS/AdS T duality, JHEP12 (2002) 051 [hep-th/0210095] [INSPIRE].
[5] C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys.50 (2009) 043508 [arXiv:0802.3518] [INSPIRE]. · Zbl 1215.81099
[6] Sfetsos, K., Integrable interpolations: from exact CFTs to non-Abelian T-duals, Nucl. Phys., B 880, 225 (2014) · Zbl 1284.81257
[7] Hollowood, TJ; Miramontes, JL; Schmidtt, DM, An integrable deformation of the AdS_5 × S^5superstring, J. Phys., A 47, 495402 (2014) · Zbl 1305.81120
[8] van Tongeren, SJ, On classical Yang-Baxter based deformations of the AdS_5 × S^5superstring, JHEP, 06, 048 (2015) · Zbl 1388.83332
[9] Osten, D.; van Tongeren, SJ, Abelian Yang-Baxter deformations and TsT transformations, Nucl. Phys., B 915, 184 (2017) · Zbl 1354.81048
[10] Hoare, B.; Tseytlin, AA, Homogeneous Yang-Baxter deformations as non-abelian duals of the AdS_5σ-model, J. Phys., A 49, 494001 (2016) · Zbl 1357.81149
[11] Borsato, R.; Wulff, L., Integrable Deformations of T-Dual σ Models, Phys. Rev. Lett., 117, 251602 (2016)
[12] Borsato, R.; Wulff, L., On non-abelian T-duality and deformations of supercoset string σ-models, JHEP, 10, 024 (2017) · Zbl 1383.83155
[13] C. Klimčík, η and λ deformations as E-models, Nucl. Phys.B 900 (2015) 259 [arXiv:1508.05832] [INSPIRE]. · Zbl 1331.81182
[14] D. Lüst and D. Osten, Generalised fluxes, Yang-Baxter deformations and the O(d, d) structure of non-abelian T-duality, JHEP05 (2018) 165 [arXiv:1803.03971] [INSPIRE]. · Zbl 1391.83115
[15] Sakamoto, J-I; Sakatani, Y., Local β-deformations and Yang-Baxter σ-model, JHEP, 06, 147 (2018) · Zbl 1395.81192
[16] Lunin, O.; Maldacena, JM, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP, 05, 033 (2005)
[17] Frolov, S., Lax pair for strings in Lunin-Maldacena background, JHEP, 05, 069 (2005)
[18] Catal-Ozer, A., Lunin-Maldacena deformations with three parameters, JHEP, 02, 026 (2006)
[19] Seiberg, N.; Witten, E., String theory and noncommutative geometry, JHEP, 09, 032 (1999) · Zbl 0957.81085
[20] Araujo, T., Yang-Baxter σ-models, conformal twists and noncommutative Yang-Mills theory, Phys. Rev., D 95, 105006 (2017)
[21] Araujo, T., Conformal twists, Yang-Baxter σ-models & holographic noncommutativity, J. Phys., A 51, 235401 (2018) · Zbl 1436.81084
[22] Borsato, R.; Wulff, L., Non-abelian T-duality and Yang-Baxter deformations of Green-Schwarz strings, JHEP, 08, 027 (2018) · Zbl 1396.83045
[23] Bakhmatov, I.; Musaev, ET, Classical Yang-Baxter equation from β-supergravity, JHEP, 01, 140 (2019) · Zbl 1409.83200
[24] I. Bakhmatov, O. Kelekci, E. Ó Colgáin and M.M. Sheikh-Jabbari, Classical Yang-Baxter equation from supergravity, Phys. Rev.D 98 (2018) 021901 [arXiv:1710.06784] [INSPIRE].
[25] I. Bakhmatov, E. Ó Colgáin, M.M. Sheikh-Jabbari and H. Yavartanoo, Yang-Baxter deformations beyond coset spaces (a slick way to do TsT), JHEP06 (2018) 161 [arXiv:1803.07498] [INSPIRE]. · Zbl 1395.83118
[26] Hull, C.; Zwiebach, B., Double field theory, JHEP, 09, 099 (2009)
[27] Hohm, O.; Samtleben, H., Exceptional form of D = 11 supergravity, Phys. Rev. Lett., 111, 231601 (2013)
[28] Sakatani, Y.; Uehara, S.; Yoshida, K., Generalized gravity from modified DFT, JHEP, 04, 123 (2017) · Zbl 1378.83094
[29] Baguet, A.; Magro, M.; Samtleben, H., Generalized IIB supergravity from exceptional field theory, JHEP, 03, 100 (2017) · Zbl 1377.83132
[30] Sakamoto, J-i; Sakatani, Y.; Yoshida, K., Homogeneous Yang-Baxter deformations as generalized diffeomorphisms, J. Phys., A 50, 415401 (2017) · Zbl 1376.81063
[31] Fernandez-Melgarejo, JJ; Sakamoto, J-I; Sakatani, Y.; Yoshida, K., T-folds from Yang-Baxter deformations, JHEP, 12, 108 (2017) · Zbl 1383.83206
[32] F. Hassler, Poisson-Lie T-duality in double field theory, arXiv:1707.08624 [INSPIRE].
[33] Demulder, S.; Hassler, F.; Thompson, DC, Doubled aspects of generalised dualities and integrable deformations, JHEP, 02, 189 (2019) · Zbl 1411.83118
[34] Y. Sakatani, Type II DFT solutions from Poisson-Lie T-duality/plurality, arXiv:1903.12175 [INSPIRE].
[35] S. Demulder, F. Hassler and D.C. Thompson, An invitation to Poisson-Lie T-duality in double field theory and its applications, PoS(PoS(CORFU2018)113 [arXiv:1904.09992] [INSPIRE].
[36] Y. Sakatani, U-duality extension of Drinfel’d double, arXiv:1911.06320 [INSPIRE].
[37] Malek, E.; Thompson, DC, Poisson-Lie U-duality in exceptional field theory, JHEP, 04, 058 (2020) · Zbl 1436.83099
[38] D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP09 (2011) 134 [arXiv:1106.4015] [INSPIRE]. · Zbl 1301.81178
[39] D. Andriot and A. Betz, β-supergravity: a ten-dimensional theory with non-geometric fluxes and its geometric framework, JHEP12 (2013) 083 [arXiv:1306.4381] [INSPIRE].
[40] Andriot, D.; Betz, A., NS-branes, source corrected Bianchi identities and more on backgrounds with non-geometric fluxes, JHEP, 07, 059 (2014)
[41] Bakhmatov, I., Tri-vector deformations in d = 11 supergravity, JHEP, 08, 126 (2019) · Zbl 1421.83127
[42] Blair, CDA; Malek, E., Geometry and fluxes of SL(5) exceptional field theory, JHEP, 03, 144 (2015) · Zbl 1388.83749
[43] A. Çatal-Özer and N.S. Deger, Beta, dipole and noncommutative deformations of M-theory backgrounds with one or more parameters, Class. Quant. Grav.26 (2009) 245015 [arXiv:0904.0629] [INSPIRE]. · Zbl 1181.83197
[44] N.S. Deger and A. Kaya, Deformations of cosmological solutions of D = 11 supergravity, Phys. Rev.D 84 (2011) 046005 [arXiv:1104.4019] [INSPIRE].
[45] Berman, DS; Perry, MJ, Generalized geometry and M-theory, JHEP, 06, 074 (2011) · Zbl 1298.81244
[46] Berman, DS; Godazgar, H.; Godazgar, M.; Perry, MJ, The local symmetries of M-theory and their formulation in generalised geometry, JHEP, 01, 012 (2012) · Zbl 1306.81196
[47] Musaev, ET, Exceptional field theory: SL(5), JHEP, 02, 012 (2016) · Zbl 1388.83867
[48] Hull, CM, Timelike T duality, de Sitter space, large N gauge theories and topological field theory, JHEP, 07, 021 (1998) · Zbl 0958.81085
[49] Hull, CM, Duality and the signature of space-time, JHEP, 11, 017 (1998) · Zbl 0953.81062
[50] Malek, E., Timelike U-dualities in generalised geometry, JHEP, 11, 185 (2013) · Zbl 1342.83494
[51] O. Hohm and H. Samtleben, Exceptional field theory I: E_6(6)covariant form of M-theory and type IIB, Phys. Rev.D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].
[52] J.J. Fernández-Melgarejo, J.-I. Sakamoto, Y. Sakatani and K. Yoshida, Weyl invariance of string theories in generalized supergravity backgrounds, Phys. Rev. Lett.122 (2019) 111602 [arXiv:1811.10600] [INSPIRE].
[53] Blair, CDA; Malek, E.; Park, J-H, M-theory and Type IIB from a duality manifest action, JHEP, 01, 172 (2014)
[54] Bergshoeff, E.; Berman, DS; van der Schaar, JP; Sundell, P., A noncommutative M-theory five-brane, Nucl. Phys., B 590, 173 (2000) · Zbl 0991.81118
[55] Berman, DS, Deformation independent open brane metrics and generalized theta parameters, JHEP, 02, 012 (2002)
[56] Araujo, T., I in generalized supergravity, Eur. Phys. J., C 77, 739 (2017)
[57] Y. Kosmann, Dérivées de Lie des spineurs, Annali Matem. Pura Appl.91 (1971) 317. · Zbl 0136.18402
[58] Figueroa-O’Farrill, JM, On the supersymmetries of Anti-de Sitter vacua, Class. Quant. Grav., 16, 2043 (1999) · Zbl 0947.83045
[59] Orlando, D.; Reffert, S.; Sekiguchi, Y.; Yoshida, K., Killing spinors from classical r-matrices, J. Phys., A 51, 395401 (2018) · Zbl 1475.81015
[60] Orlando, Domenico; Reffert, Susanne; Sekiguchi, Yuta; Yoshida, Kentaroh, SUSY and the bi-vector, Physica Scripta, 94, 9, 095001 (2019)
[61] D. Orlando et al., Yang-Baxter deformations and generalized supergravity — A short summary, arXiv:1912.02553 [INSPIRE].
[62] Y. Sakatani and S. Uehara, Non-Abelian U-duality for membrane, arXiv:2001.09983 [INSPIRE].
[63] Zamolodchikov, AB, Tetrahedron equations and the relativistic S matrix of straight strings in (2 + 1)-dimensions, Commun. Math. Phys., 79, 489 (1981)
[64] Frenkel, I.; Moore, G., Simplex equations and their solutions, Comm. Math. Phys., 138, 259 (1991) · Zbl 0749.17039
[65] J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev.D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].
[66] J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev.D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].
[67] Aharony, O.; Bergman, O.; Jafferis, DL; Maldacena, J., N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP, 10, 091 (2008) · Zbl 1245.81130
[68] Maldacena, JM; Russo, JG, Large N limit of noncommutative gauge theories, JHEP, 09, 025 (1999) · Zbl 0957.81083
[69] Imeroni, E., On deformed gauge theories and their string/M-theory duals, JHEP, 10, 026 (2008) · Zbl 1245.81183
[70] van Tongeren, SJ, Yang-Baxter deformations, AdS/CFT and twist-noncommutative gauge theory, Nucl. Phys., B 904, 148 (2016) · Zbl 1332.81197
[71] Martin, CP; Trampetic, J.; You, J., Quantum noncommutative ABJM theory: first steps, JHEP, 04, 070 (2018) · Zbl 1390.83236
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.