×

Generalised fluxes, Yang-Baxter deformations and the O\((d,d)\) structure of non-abelian \(T\)-duality. (English) Zbl 1391.83115

Summary: Based on the construction of Poisson-Lie \(T\)-dual \(\sigma\)-models from a common parent action we study a candidate for the non-abelian respectively Poisson-Lie \(T\)-duality group. This group generalises the well-known abelian \(T\)-duality group O\((d,d)\) and we explore some of its subgroups, namely factorised dualities, \(B\)- and \(\beta\)-shifts. The corresponding duality transformed \(\sigma\)-models are constructed and interpreted as generalised (non-geometric) flux backgrounds.
We also comment on generalisations of results and techniques known from abelian \(T\)-duality. This includes the Lie algebra cohomology interpretation of the corresponding non-geometric flux backgrounds, remarks on a double field theory based on non-abelian \(T\)-duality and an application to the investigation of Yang-Baxter deformations. This will show that homogeneously Yang-Baxter deformed \(\sigma\)-models are exactly the non-abelian \(T\)-duality \(\beta\)-shifts when applied to principal chiral models.

MSC:

83E30 String and superstring theories in gravitational theory
81R12 Groups and algebras in quantum theory and relations with integrable systems
83C65 Methods of noncommutative geometry in general relativity
16T25 Yang-Baxter equations

References:

[1] Giveon, A.; Porrati, M.; Rabinovici, E., Target space duality in string theory, Phys. Rept., 244, 77, (1994) · doi:10.1016/0370-1573(94)90070-1
[2] Álvarez, E.; Álvarez-Gaumé, L.; Lozano, Y., An introduction to T duality in string theory, Nucl. Phys. Proc. Suppl., 41, 1, (1995) · Zbl 1076.81554 · doi:10.1016/0920-5632(95)00429-D
[3] Ossa, XC; Quevedo, F., Duality symmetries from non-abelian isometries in string theory, Nucl. Phys., B 403, 377, (1993) · Zbl 1030.81513 · doi:10.1016/0550-3213(93)90041-M
[4] Klimčík, C.; Ševera, P., Dual non-abelian duality and the Drinfeld double, Phys. Lett., B 351, 455, (1995) · Zbl 1022.81692 · doi:10.1016/0370-2693(95)00451-P
[5] Klimčík, C., Poisson-Lie T-duality, Nucl. Phys. Proc. Suppl., 46, 116, (1996) · Zbl 0957.81598 · doi:10.1016/0920-5632(96)00013-8
[6] Giveon, A.; Roček, M., On non-abelian duality, Nucl. Phys., B 421, 173, (1994) · Zbl 0990.81690 · doi:10.1016/0550-3213(94)90230-5
[7] Elitzur, S.; Giveon, A.; Rabinovici, E.; Schwimmer, A.; Veneziano, G., Remarks on non-abelian duality, Nucl. Phys., B 435, 147, (1995) · Zbl 1020.81834 · doi:10.1016/0550-3213(94)00426-F
[8] Tyurin, E.; Unge, R., Poisson-Lie T-duality: the path integral derivation, Phys. Lett., B 382, 233, (1996) · doi:10.1016/0370-2693(96)00680-6
[9] Klimčík, C.; Ševera, P., Poisson-Lie T-duality and loop groups of Drinfeld doubles, Phys. Lett., B 372, 65, (1996) · Zbl 1037.81576 · doi:10.1016/0370-2693(96)00025-1
[10] Parkhomenko, SE, On the quantum Poisson-Lie T-duality and mirror symmetry, J. Exp. Theor. Phys., 89, 5, (1999) · doi:10.1134/1.558947
[11] Sfetsos, K., Canonical equivalence of nonisometric σ-models and Poisson-Lie T duality, Nucl. Phys., B 517, 549, (1998) · Zbl 0945.81022 · doi:10.1016/S0550-3213(97)00823-7
[12] Sfetsos, K.; Siampos, K., Quantum equivalence in Poisson-Lie T-duality, JHEP, 06, 082, (2009) · doi:10.1088/1126-6708/2009/06/082
[13] Sfetsos, K., Recent developments in non-abelian T-duality in string theory, Fortsch. Phys., 59, 1149, (2011) · Zbl 1241.81137 · doi:10.1002/prop.201100063
[14] Y. Lozano, E. Ó Colgáin, K. Sfetsos and D.C. Thompson, Non-abelian T-duality, Ramond fields and coset geometries, JHEP06 (2011) 106 [arXiv:1104.5196] [INSPIRE]. · Zbl 1298.81316
[15] G. Itsios, Y. Lozano, E. Ó Colgáin and K. Sfetsos, Non-Abelian T-duality and consistent truncations in type-II supergravity, JHEP08 (2012) 132 [arXiv:1205.2274] [INSPIRE]. · Zbl 1383.83206
[16] Macpherson, NT, non-abelian T-duality, G_{2}-structure rotation and holographic duals of N = 1 Chern-Simons theories, JHEP, 11, 137, (2013) · Zbl 1342.81451 · doi:10.1007/JHEP11(2013)137
[17] Itsios, G.; Núñez, C.; Sfetsos, K.; Thompson, DC, on non-abelian T-duality and new N = 1 backgrounds, Phys. Lett., B 721, 342, (2013) · Zbl 1309.83091 · doi:10.1016/j.physletb.2013.03.033
[18] Itsios, G.; Núñez, C.; Sfetsos, K.; Thompson, DC, non-abelian T-duality and the AdS/CFT correspondence:new N = 1 backgrounds, Nucl. Phys., B 873, 1, (2013) · Zbl 1282.81147 · doi:10.1016/j.nuclphysb.2013.04.004
[19] Y. Lozano, E. Ó Colgáin and D. Rodríguez-Gómez, Hints of 5d Fixed Point Theories from Non-Abelian T-duality, JHEP05 (2014) 009 [arXiv:1311.4842] [INSPIRE]. · Zbl 1376.81063
[20] Klimčík, C., On integrability of the Yang-Baxter σ-model, J. Math. Phys., 50, (2009) · Zbl 1215.81099 · doi:10.1063/1.3116242
[21] Delduc, F.; Magro, M.; Vicedo, B., an integrable deformation of the AdS_{5} × \(S\)\^{}{5}superstring action, Phys. Rev. Lett., 112, (2014) · Zbl 1333.81322 · doi:10.1103/PhysRevLett.112.051601
[22] Sfetsos, K., Integrable interpolations: from exact CFTs to non-abelian T-duals, Nucl. Phys., B 880, 225, (2014) · Zbl 1284.81257 · doi:10.1016/j.nuclphysb.2014.01.004
[23] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., Jordanian deformations of the AdS_{5} × \(S\)\^{}{5}superstring, JHEP, 04, 153, (2014) · doi:10.1007/JHEP04(2014)153
[24] Orlando, D.; Reffert, S.; Sakamoto, J-i; Yoshida, K., Generalized type IIB supergravity equations and non-abelian classical r-matrices, J. Phys., A 49, 445403, (2016) · Zbl 1354.83054
[25] Borsato, R.; Wulff, L., Target space supergeometry of η and λ-deformed strings, JHEP, 10, 045, (2016) · Zbl 1390.81412 · doi:10.1007/JHEP10(2016)045
[26] Borsato, R.; Wulff, L., Integrable deformations of T -dual σ models, Phys. Rev. Lett., 117, 251602, (2016) · Zbl 1332.81170 · doi:10.1103/PhysRevLett.117.251602
[27] Hoare, B.; Tseytlin, AA, homogeneous Yang-Baxter deformations as non-abelian duals of the AdS_{5}σ-model, J. Phys., A 49, 494001, (2016) · Zbl 1357.81149
[28] Hoare, B.; Thompson, DC, Marginal and non-commutative deformations via non-abelian T-duality, JHEP, 02, 059, (2017) · Zbl 1377.83056 · doi:10.1007/JHEP02(2017)059
[29] Osten, D.; Tongeren, SJ, Abelian Yang-Baxter deformations and tst transformations, Nucl. Phys., B 915, 184, (2017) · Zbl 1354.81048 · doi:10.1016/j.nuclphysb.2016.12.007
[30] Bakas, I.; Lüst, D., 3-cocycles, non-associative star-products and the magnetic paradigm of R-flux string vacua, JHEP, 01, 171, (2014) · doi:10.1007/JHEP01(2014)171
[31] Roček, M.; Verlinde, EP, Duality, quotients and currents, Nucl. Phys., B 373, 630, (1992) · doi:10.1016/0550-3213(92)90269-H
[32] Buscher, TH, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett., B 201, 466, (1988) · doi:10.1016/0370-2693(88)90602-8
[33] Tseytlin, AA, Duality symmetric formulation of string world sheet dynamics, Phys. Lett., B 242, 163, (1990) · doi:10.1016/0370-2693(90)91454-J
[34] Tseytlin, AA, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys., B 350, 395, (1991) · doi:10.1016/0550-3213(91)90266-Z
[35] Giveon, A.; Roček, M., Generalized duality in curved string backgrounds, Nucl. Phys., B 380, 128, (1992) · doi:10.1016/0550-3213(92)90518-G
[36] Siegel, W., Two vierbein formalism for string inspired axionic gravity, Phys. Rev., D 47, 5453, (1993)
[37] Giveon, A.; Kiritsis, E., Axial vector duality as a gauge symmetry and topology change in string theory, Nucl. Phys., B 411, 487, (1994) · Zbl 1049.81628 · doi:10.1016/0550-3213(94)90460-X
[38] Álvarez, E.; Álvarez-Gaumé, L.; Barbón, JLF; Lozano, Y., Some global aspects of duality in string theory, Nucl. Phys., B 415, 71, (1994) · Zbl 1007.81529 · doi:10.1016/0550-3213(94)90067-1
[39] Álvarez, E.; Álvarez-Gaumé, L.; Lozano, Y., A canonical approach to duality transformations, Phys. Lett., B 336, 183, (1994) · Zbl 0990.81648 · doi:10.1016/0370-2693(94)00982-1
[40] O. Alvarez and C.-H. Liu, Target space duality between simple compact Lie groups and Lie algebras under the Hamiltonian formalism: 1. Remnants of duality at the classical level, Commun. Math. Phys.179 (1996) 185 [hep-th/9503226] [INSPIRE]. · Zbl 0861.58015
[41] O. Alvarez, Target space duality. 1. General theory, Nucl. Phys.B 584 (2000) 659 [hep-th/0003177] [INSPIRE]. · Zbl 0984.81120
[42] Bouwknegt, P.; Evslin, J.; Mathai, V., T duality: topology change from H flux, Commun. Math. Phys., 249, 383, (2004) · Zbl 1062.81119 · doi:10.1007/s00220-004-1115-6
[43] Plauschinn, E., T-duality revisited, JHEP, 01, 131, (2014) · Zbl 1333.81268 · doi:10.1007/JHEP01(2014)131
[44] Rennecke, F., O(d, d)-duality in string theory, JHEP, 10, 69, (2014) · Zbl 1333.81357 · doi:10.1007/JHEP10(2014)069
[45] Frolov, S., Lax pair for strings in lunin-Maldacena background, JHEP, 05, 069, (2005) · doi:10.1088/1126-6708/2005/05/069
[46] Alday, LF; Arutyunov, G.; Frolov, S., Green-Schwarz strings in tst-transformed backgrounds, JHEP, 06, 018, (2006) · doi:10.1088/1126-6708/2006/06/018
[47] Gasperini, M.; Ricci, R.; Veneziano, G., A problem with non-abelian duality?, Phys. Lett., B 319, 438, (1993) · doi:10.1016/0370-2693(93)91748-C
[48] Álvarez, E.; Álvarez-Gaumé, L.; Lozano, Y., On non-abelian duality, Nucl. Phys., B 424, 155, (1994) · Zbl 0990.81648 · doi:10.1016/0550-3213(94)90093-0
[49] M. Hong, Y. Kim and E. Ó Colgáin, On non-Abelian T-duality for non-semisimple groups, arXiv:1801.09567 [INSPIRE].
[50] Vicedo, B., Deformed integrable σ-models, classical R-matrices and classical exchange algebra on drinfel’d doubles, J. Phys., A 48, 355203, (2015) · Zbl 1422.37037
[51] Drinfeld, VG, Hamiltonian structures of Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Sov. Math. Dokl., 27, 68, (1983) · Zbl 0526.58017
[52] Hoare, B.; Seibold, FK, Poisson-Lie duals of the η deformed symmetric space σ-model, JHEP, 11, 014, (2017) · Zbl 1383.81130 · doi:10.1007/JHEP11(2017)014
[53] Driezen, S.; Sevrin, A.; Thompson, DC, Aspects of the doubled worldsheet, JHEP, 12, 082, (2016) · Zbl 1390.81587 · doi:10.1007/JHEP12(2016)082
[54] Ševera, P., Poisson-Lie T-duality and Courant algebroids, Lett. Math. Phys., 105, 1689, (2015) · Zbl 1344.53064 · doi:10.1007/s11005-015-0796-4
[55] Klimčík, C.; Ševera, P., Poisson Lie T duality: open strings and D-branes, Phys. Lett., B 376, 82, (1996) · Zbl 1190.81107 · doi:10.1016/0370-2693(96)00294-8
[56] Klimčík, C.; Ševera, P., Open strings and D-branes in WZNW model, Nucl. Phys., B 488, 653, (1997) · Zbl 0925.81240 · doi:10.1016/S0550-3213(97)00029-1
[57] Sfetsos, K., Nonabelian duality, parafermions and supersymmetry, Phys. Rev., D 54, 1682, (1996)
[58] Sfetsos, K., Duality invariant class of two-dimensional field theories, Nucl. Phys., B 561, 316, (1999) · Zbl 0958.81156 · doi:10.1016/S0550-3213(99)00485-X
[59] Stern, A., Hamiltonian approach to Poisson Lie T-duality, Phys. Lett., B 450, 141, (1999) · doi:10.1016/S0370-2693(99)00111-2
[60] Cabrera, A.; Montani, H.; Zuccalli, M., Poisson-Lie T-duality and non-trivial monodromies, J. Geom. Phys., 59, 576, (2009) · Zbl 1169.37014 · doi:10.1016/j.geomphys.2009.01.005
[61] Alekseev, AY; Malkin, AZ, Symplectic structures associated to Lie-Poisson groups, Commun. Math. Phys., 162, 147, (1994) · Zbl 0797.58020 · doi:10.1007/BF02105190
[62] Sfetsos, K., Poisson-Lie T-duality beyond the classical level and the renormalization group, Phys. Lett., B 432, 365, (1998) · doi:10.1016/S0370-2693(98)00666-2
[63] Jafarizadeh, MA; Rezaei-Aghdam, A., Poisson-Lie T-duality and Bianchi type algebras, Phys. Lett., B 458, 477, (1999) · Zbl 0963.17014 · doi:10.1016/S0370-2693(99)00571-7
[64] R. von Unge, Poisson-Lie T-plurality, JHEP07 (2002) 014 [hep-ph/0205245] [INSPIRE].
[65] Snobl, L., On modular spaces of semisimple Drinfeld doubles, JHEP, 09, 018, (2002) · doi:10.1088/1126-6708/2002/09/018
[66] Hlavaty, L.; Snobl, L., Poisson-Lie T-plurality of three-dimensional conformally invariant sigma models, JHEP, 10, 045, (2004) · doi:10.1088/1126-6708/2004/10/045
[67] Hlavaty, L.; Snobl, L., Poisson-Lie T-plurality as canonical transformation, Nucl. Phys., B 768, 209, (2007) · Zbl 1117.70028 · doi:10.1016/j.nuclphysb.2007.01.017
[68] Shelton, J.; Taylor, W.; Wecht, B., Nongeometric flux compactifications, JHEP, 10, 085, (2005) · doi:10.1088/1126-6708/2005/10/085
[69] Hassler, F., The topology of double field theory, JHEP, 04, 128, (2018) · Zbl 1390.81512 · doi:10.1007/JHEP04(2018)128
[70] Blumenhagen, R.; Deser, A.; Lüst, D.; Plauschinn, E.; Rennecke, F., Non-geometric fluxes, asymmetric strings and nonassociative geometry, J. Phys., A 44, 385401, (2011) · Zbl 1229.81220
[71] Blumenhagen, R.; Plauschinn, E., Nonassociative gravity in string theory?, J. Phys., A 44, (2011) · Zbl 1208.83101
[72] Lüst, D., T-duality and closed string non-commutative (doubled) geometry, JHEP, 12, 084, (2010) · Zbl 1294.81255 · doi:10.1007/JHEP12(2010)084
[73] Condeescu, C.; Florakis, I.; Lüst, D., Asymmetric orbifolds, non-geometric fluxes and non-commutativity in closed string theory, JHEP, 04, 121, (2012) · Zbl 1348.81362 · doi:10.1007/JHEP04(2012)121
[74] D. Andriot, M. Larfors, D. Lüst and P. Patalong, (Non-)commutative closed string on T-dual toroidal backgrounds, JHEP06 (2013) 021 [arXiv:1211.6437] [INSPIRE]. · Zbl 1342.81630
[75] Mylonas, D.; Schupp, P.; Szabo, RJ, Membrane σ-models and quantization of non-geometric flux backgrounds, JHEP, 09, 012, (2012) · Zbl 1397.81409 · doi:10.1007/JHEP09(2012)012
[76] Graña, M.; Minasian, R.; Petrini, M.; Waldram, D., T-duality, generalized geometry and non-geometric backgrounds, JHEP, 04, 075, (2009) · doi:10.1088/1126-6708/2009/04/075
[77] Blumenhagen, R.; Deser, A.; Plauschinn, E.; Rennecke, F., Palatini-Lovelock-Cartan gravity - Bianchi identities for stringy fluxes, Class. Quant. Grav., 29, 135004, (2012) · Zbl 1248.83104 · doi:10.1088/0264-9381/29/13/135004
[78] Hull, C.; Zwiebach, B., Double field theory, JHEP, 09, 099, (2009) · doi:10.1088/1126-6708/2009/09/099
[79] Zwiebach, B., Double field theory, T-duality and Courant brackets, Lect. Notes Phys., 851, 265, (2012) · Zbl 1292.81122 · doi:10.1007/978-3-642-25947-0_7
[80] Aldazabal, G.; Graña, M.; Marqués, D.; Rosabal, JA, Extended geometry and gauged maximal supergravity, JHEP, 06, 046, (2013) · Zbl 1342.83439 · doi:10.1007/JHEP06(2013)046
[81] Hohm, O.; Lüst, D.; Zwiebach, B., The spacetime of double field theory: review, remarks and outlook, Fortsch. Phys., 61, 926, (2013) · Zbl 1338.81328 · doi:10.1002/prop.201300024
[82] Berman, DS; Thompson, DC, Duality symmetric string and M-theory, Phys. Rept., 566, 1, (2014) · doi:10.1016/j.physrep.2014.11.007
[83] Hull, CM; Reid-Edwards, RA, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP, 09, 014, (2009) · doi:10.1088/1126-6708/2009/09/014
[84] R.A. Reid-Edwards, Bi-Algebras, Generalised Geometry and T-duality, arXiv:1001.2479 [INSPIRE].
[85] Blumenhagen, R.; Hassler, F.; Lüst, D., Double field theory on group manifolds, JHEP, 02, 001, (2015) · Zbl 1388.81401
[86] Blumenhagen, R.; Bosque, P.; Hassler, F.; Lüst, D., Generalized metric formulation of double field theory on group manifolds, JHEP, 08, 056, (2015) · Zbl 1388.81492 · doi:10.1007/JHEP08(2015)056
[87] F. Hassler, Poisson-Lie T-duality in Double Field Theory, arXiv:1707.08624 [INSPIRE]. · Zbl 1333.81357
[88] Vaisman, I., On the geometry of double field theory, J. Math. Phys., 53, (2012) · Zbl 1274.81197 · doi:10.1063/1.3694739
[89] Vaisman, I., Towards a double field theory on para-Hermitian manifolds, J. Math. Phys., 54, 123507, (2013) · Zbl 1285.81060 · doi:10.1063/1.4848777
[90] Freidel, L.; Rudolph, FJ; Svoboda, D., Generalised kinematics for double field theory, JHEP, 11, 175, (2017) · Zbl 1383.83091 · doi:10.1007/JHEP11(2017)175
[91] D. Svoboda, Algebroid Structures on Para-Hermitian Manifolds, arXiv:1802.08180 [INSPIRE].
[92] Calvaruso, G.; Ovando, GP, From almost (para)-complex structures to affine structures on Lie groups, Manuscripta Math., 155, 89, (2017) · Zbl 1384.53027 · doi:10.1007/s00229-017-0934-7
[93] Georgiou, G.; Sfetsos, K., A new class of integrable deformations of cfts, JHEP, 03, 083, (2017) · Zbl 1377.81170 · doi:10.1007/JHEP03(2017)083
[94] Y. Chervonyi and O. Lunin, Generalized λ-deformations of AdS_{\(p\)} × \(S\)\^{}{\(p\)}, Nucl. Phys.B 913 (2016) 912 [arXiv:1608.06641] [INSPIRE]. · Zbl 0973.81527
[95] Chervonyi, Y.; Lunin, O., supergravity background of the λ-deformed AdS_{3} × \(S\)\^{}{3}supercoset, Nucl. Phys., B 910, 685, (2016) · Zbl 1345.83040 · doi:10.1016/j.nuclphysb.2016.07.023
[96] Klimčík, C., Yang-Baxter σ-models and ds/AdS T-duality, JHEP, 12, 051, (2002) · doi:10.1088/1126-6708/2002/12/051
[97] Delduc, F.; Magro, M.; Vicedo, B., On classical q-deformations of integrable σ-models, JHEP, 11, 192, (2013) · Zbl 1342.81182 · doi:10.1007/JHEP11(2013)192
[98] Arutyunov, G.; Frolov, S.; Hoare, B.; Roiban, R.; Tseytlin, AA, scale invariance of the η-deformed AdS_{5} × \(S\)\^{}{5}superstring, T-duality and modified type-II equations, Nucl. Phys., B 903, 262, (2016) · Zbl 1332.81167 · doi:10.1016/j.nuclphysb.2015.12.012
[99] L. Wulff and A.A. Tseytlin, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP06 (2016) 174 [arXiv:1605.04884] [INSPIRE]. · Zbl 1390.83426
[100] I. Bakhmatov, Ö Kelekci, E. Ó Colgáin and M.M. Sheikh-Jabbari, Classical Yang-Baxter Equation from Supergravity, arXiv:1710.06784 [INSPIRE].
[101] T. Araujo, E. Ó Colgáin, J. Sakamoto, M.M. Sheikh-Jabbari and K. Yoshida, I in generalized supergravity, Eur. Phys. J.C 77 (2017) 739 [arXiv:1708.03163] [INSPIRE].
[102] Matsumoto, T.; Yoshida, K., Yang-Baxter deformations and string dualities, JHEP, 03, 137, (2015) · Zbl 1388.83865 · doi:10.1007/JHEP03(2015)137
[103] Matsumoto, T.; Yoshida, K., Integrability of classical strings dual for noncommutative gauge theories, JHEP, 06, 163, (2014) · Zbl 1333.81262 · doi:10.1007/JHEP06(2014)163
[104] Matsumoto, T.; Yoshida, K., Lunin-Maldacena backgrounds from the classical Yang-Baxter equation — towards the gravity/CYBE correspondence, JHEP, 06, 135, (2014) · Zbl 1333.83196 · doi:10.1007/JHEP06(2014)135
[105] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., A Jordanian deformation of AdS space in type IIB supergravity, JHEP, 06, 146, (2014) · Zbl 1333.83195 · doi:10.1007/JHEP06(2014)146
[106] Tongeren, SJ, integrability of the ads_{5} × S\^{}{5}superstring and its deformations, J. Phys., A 47, 433001, (2014) · Zbl 1319.81071
[107] Matsumoto, T.; Yoshida, K., Schrödinger geometries arising from Yang-Baxter deformations, JHEP, 04, 180, (2015) · Zbl 1388.83866 · doi:10.1007/JHEP04(2015)180
[108] Matsumoto, T.; Yoshida, K., Yang-Baxter σ-models based on the CYBE, Nucl. Phys., B 893, 287, (2015) · Zbl 1348.81379 · doi:10.1016/j.nuclphysb.2015.02.009
[109] Tongeren, SJ, on classical Yang-Baxter based deformations of the AdS_{5} × \(S\)\^{}{5}superstring, JHEP, 06, 048, (2015) · Zbl 1388.83332 · doi:10.1007/JHEP06(2015)048
[110] Tongeren, SJ, Yang-Baxter deformations, AdS/CFT and twist-noncommutative gauge theory, Nucl. Phys., B 904, 148, (2016) · Zbl 1332.81197 · doi:10.1016/j.nuclphysb.2016.01.012
[111] Hoare, B.; Tongeren, SJ, non-split and split deformations of ads_{5}, J. Phys., A 49, 484003, (2016) · Zbl 1354.81047
[112] Hoare, B.; Tongeren, SJ, on Jordanian deformations of AdS_{5}and supergravity, J. Phys., A 49, 434006, (2016) · Zbl 1352.81050
[113] Borsato, R.; Wulff, L., On non-abelian T-duality and deformations of supercoset string σ-models, JHEP, 10, 024, (2017) · Zbl 1383.83155 · doi:10.1007/JHEP10(2017)024
[114] Sakamoto, J-i; Sakatani, Y.; Yoshida, K., Homogeneous Yang-Baxter deformations as generalized diffeomorphisms, J. Phys., A 50, 415401, (2017) · Zbl 1376.81063
[115] Tongeren, SJ, Almost abelian twists and AdS/CFT, Phys. Lett., B 765, 344, (2017) · Zbl 1369.81081 · doi:10.1016/j.physletb.2016.12.002
[116] T. Araujo, I. Bakhmatov, E. Ó Colgáin, J. Sakamoto, M.M. Sheikh-Jabbari and K. Yoshida, Yang-Baxter σ-models, conformal twists and noncommutative Yang-Mills theory, Phys. Rev.D 95 (2017) 105006 [arXiv:1702.02861] [INSPIRE].
[117] T. Araujo, I. Bakhmatov, E. Ó Colgáin, J.-i. Sakamoto, M.M. Sheikh-Jabbari and K. Yoshida, Conformal Twists, Yang-Baxter σ-models and Holographic Noncommutativity, arXiv:1705.02063 [INSPIRE]. · Zbl 1436.81084
[118] Lunin, O.; Maldacena, J., deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP, 05, 033, (2005) · doi:10.1088/1126-6708/2005/05/033
[119] Fernández-Melgarejo, JJ; Sakamoto, J-i; Sakatani, Y.; Yoshida, K., T -folds from Yang-Baxter deformations, JHEP, 12, 108, (2017) · Zbl 1383.83206 · doi:10.1007/JHEP12(2017)108
[120] Klimčík, C., Integrability of the bi-Yang-Baxter σ-model, Lett. Math. Phys., 104, 1095, (2014) · Zbl 1359.70102 · doi:10.1007/s11005-014-0709-y
[121] Delduc, F.; Lacroix, S.; Magro, M.; Vicedo, B., On the Hamiltonian integrability of the bi-Yang-Baxter σ-model, JHEP, 03, 104, (2016) · Zbl 1388.81258 · doi:10.1007/JHEP03(2016)104
[122] Chevalley, C.; Eilenberg, S., Cohomology theory of Lie groups and Lie algebras, Trans. Am. Math. Soc., 63, 85, (1948) · Zbl 0031.24803 · doi:10.1090/S0002-9947-1948-0024908-8
[123] Y. Kosmann, Integrability of Nonlinear Systems. Lie bialgebras, Poisson Lie groups and dressing transformations, Lecture Notes Phys.638 (2004) 107.
[124] Lichnerowicz, A.; Medina, A., On Lie groups with left-invariant symplectic or Kaehlerian structures, Lett. Math. Phys., 16, 225, (1988) · Zbl 0665.53046 · doi:10.1007/BF00398959
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.