×

Ground states of two-component attractive Bose-Einstein condensates. II: Semi-trivial limit behavior. (English) Zbl 1421.35088

In this paper the authors continue their analysis of two-component attractive Bose-Einstein condensates by studying new pattern formations of ground states \((u_1,u_2)\). It is assumed the trapping potentials are homogeneous in \(\mathbb{R}^2\), the intraspecies interaction \((-a,-b)\) and the interspecies interaction \(-\beta\) are both attractive, i.e., \(a,b,\beta>0\).
The particular Gross-Pitaevskii system considered is \[ \begin{cases} -\Delta u_1+V_1(x)u_1=\mu u_1+au_1^3+\beta u_2^2u_1 \ \text{ in } \mathbb{R}^2,\\ -\Delta u_2+V_2(x)u_2=\mu u_2+bu_2^3+\beta u_1^2u_2 \ \text{ in } \mathbb{R}^2. \end{cases} \] Ground states of such systems can be described equivalently by minimizers of the \(L^2\)-critical constraint variation problem \[ e(a,b,\beta)=\inf_{(u_1,u_2)\in \chi \ : \int_{\mathbb{R}^2}u_1^2+u_2^2=1}E_{a,b,\beta}(u_1,u_2), \quad a, b, \beta>0, \] where the Gross-Pitaevskii energy function is given by \[ E_{a,b,\beta}(u_1,u_2) =\int_{\mathbb{R}^2}\left(|\nabla u_1|^2+|\nabla u_2|^2\right)+\int_{\mathbb{R}^2}\left(V_1(x)u_1^2+V_2(x)u_2^2\right) \] \[ -\int_{\mathbb{R}^2}\left(\frac{a}{2}u_1^4+\frac{b}{2}u_2^4+\beta u_1^2u_2^2\right), \] and the space of allowable functions is \(\chi=\mathcal{H}_1(\mathbb{R}^2)\times\mathcal{H}_2(\mathbb{R}^2)\), with \[ \mathcal{H}_i(\mathbb{R}^2)=\left\{u\in H^1(\mathbb{R}^2) \ : \ \int_{\mathbb{R}^2}V_i(x)u^2<\infty\right\}. \] The trapping potentials \(V_1,V_2\) are assumed to be homogeneous.
The main goal of this paper is to investigate new pattern formations of nonnegative minimizers \((u_1,u_2)\) for \(e(a,b,\beta)\), under certain regimes for \(a,b,\beta\).
If \(0< b < a^* =||w||_2^2\) and \(0< \beta< a^*\) are fixed, where \(w\) is the unique positive solution of \(\Delta w-w+w^3=0\) in \(\mathbb{R}^2\), the authors obtain semi-trivial behavior of \((u_1,u_2)\) as \(a\nearrow a^*\), that is, \(u_1\) concentrates at a unique point and \(u_2\equiv 0\) in \(\mathbb{R}^2\).
Under a nondegeneracy assumption, if \(0< b< a^*\) and \(a^*\le \beta<\beta^*=a^*+\sqrt{(a^*-a)(a^*-b)}\), the refined spike profile and the uniqueness of \((u_1,u_2)\) as \(a\nearrow a^*\) are analyzed. It is shown that \((u_1,u_2)\) must be unique, \(u_1\) concentrates at a unique point, and \(u_2\) either blows-up or vanishes, depending on how \(\beta\) approaches \(a^*\).

MSC:

35J50 Variational methods for elliptic systems
35J47 Second-order elliptic systems
46N50 Applications of functional analysis in quantum physics

References:

[1] Bao, Weizhu; Cai, Yongyong, Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction, East Asian J. Appl. Math., 1, 1, 49-81 (2011) · Zbl 1290.35236 · doi:10.4208/eajam.190310.170510a
[2] Bartsch, Thomas; Wang, Zhi Qiang, Existence and multiplicity results for some superlinear elliptic problems on \({\bf R}^N\), Comm. Partial Differential Equations, 20, 9-10, 1725-1741 (1995) · Zbl 0837.35043 · doi:10.1080/03605309508821149
[3] Byeon, Jaeyoung; Sato, Yohei; Wang, Zhi-Qiang, Pattern formation via mixed attractive and repulsive interactions for nonlinear Schr\"odinger systems, J. Math. Pures Appl. (9), 106, 3, 477-511 (2016) · Zbl 1345.35032 · doi:10.1016/j.matpur.2016.03.001
[4] Byeon, Jaeyoung; Sato, Yohei; Wang, Zhi-Qiang, Pattern formation via mixed interactions for coupled Schr\"odinger equations under Neumann boundary condition, J. Fixed Point Theory Appl., 19, 1, 559-583 (2017) · Zbl 1373.35132 · doi:10.1007/s11784-016-0365-1
[5] Cao, Daomin; Li, Shuanglong; Luo, Peng, Uniqueness of positive bound states with multi-bump for nonlinear Schr\"odinger equations, Calc. Var. Partial Differential Equations, 54, 4, 4037-4063 (2015) · Zbl 1338.35404 · doi:10.1007/s00526-015-0930-2
[6] Dancer, E. N.; Wei, Juncheng, Spike solutions in coupled nonlinear Schr\"odinger equations with attractive interaction, Trans. Amer. Math. Soc., 361, 3, 1189-1208 (2009) · Zbl 1163.35034 · doi:10.1090/S0002-9947-08-04735-1
[7] Deng, Yinbin; Lin, Chang-Shou; Yan, Shusen, On the prescribed scalar curvature problem in \(\mathbb{R}^N\), local uniqueness and periodicity, J. Math. Pures Appl. (9), 104, 6, 1013-1044 (2015) · Zbl 1328.53045 · doi:10.1016/j.matpur.2015.07.003
[8] EGBB B. D. Esry, C. H. Greene, J. P. Burke, and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78 (1997), 3594-3597.
[9] Fanelli, Luca; Montefusco, Eugenio, On the blow-up threshold for weakly coupled nonlinear Schr\"odinger equations, J. Phys. A, 40, 47, 14139-14150 (2007) · Zbl 1134.35099 · doi:10.1088/1751-8113/40/47/007
[10] Gidas, B.; Ni, Wei Ming; Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in \({\bf R}^n\). Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud. 7, 369-402 (1981), Academic Press, New York-London · Zbl 0469.35052
[11] Gilbarg, David; Trudinger, Neil S., Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, x+401 pp. (1977), Springer-Verlag, Berlin-New York · Zbl 0361.35003
[12] Grossi, Massimo, On the number of single-peak solutions of the nonlinear Schr\`“odinger equation, Ann. Inst. H. Poincar\'”e Anal. Non Lin\'eaire, 19, 3, 261-280 (2002) · Zbl 1034.35127 · doi:10.1016/S0294-1449(01)00089-0
[13] Guo, Yujin; Lin, Changshou; Wei, Juncheng, Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates, SIAM J. Math. Anal., 49, 5, 3671-3715 (2017) · Zbl 1380.35093 · doi:10.1137/16M1100290
[14] Guo, Yujin; Li, Shuai; Wei, Juncheng; Zeng, Xiaoyu, Ground states of two-component attractive Bose-Einstein condensates I: Existence and uniqueness, J. Funct. Anal., 276, 1, 183-230 (2019) · Zbl 1405.35038 · doi:10.1016/j.jfa.2018.09.015
[15] Guo, Yujin; Seiringer, Robert, On the mass concentration for Bose-Einstein condensates with attractive interactions, Lett. Math. Phys., 104, 2, 141-156 (2014) · Zbl 1311.35241 · doi:10.1007/s11005-013-0667-9
[16] Guo, Yujin; Wang, Zhi-Qiang; Zeng, Xiaoyu; Zhou, Huan-Song, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity, 31, 3, 957-979 (2018) · Zbl 1396.35018 · doi:10.1088/1361-6544/aa99a8
[17] Guo, Yujin; Zeng, Xiaoyu; Zhou, Huan-Song, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 33, 3, 809-828 (2016) · Zbl 1341.35053 · doi:10.1016/j.anihpc.2015.01.005
[18] Guo, Yujin; Zeng, Xiaoyu; Zhou, Huan-Song, Blow-up solutions for two coupled Gross-Pitaevskii equations with attractive interactions, Discrete Contin. Dyn. Syst., 37, 7, 3749-3786 (2017) · Zbl 1372.35084 · doi:10.3934/dcds.2017159
[19] HMEWC D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates, Phys. Rev. Lett. 81 (1998), 1539-1542.
[20] Han, Qing; Lin, Fanghua, Elliptic partial differential equations, Courant Lecture Notes in Mathematics 1, x+147 pp. (2011), Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI · Zbl 1210.35031
[21] Kwong, Man Kam, Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({\bf R}^n\), Arch. Rational Mech. Anal., 105, 3, 243-266 (1989) · Zbl 0676.35032 · doi:10.1007/BF00251502
[22] Li, Yi; Ni, Wei-Ming, Radial symmetry of positive solutions of nonlinear elliptic equations in \({\bf R}^n\), Comm. Partial Differential Equations, 18, 5-6, 1043-1054 (1993) · Zbl 0788.35042 · doi:10.1080/03605309308820960
[23] Lieb, Elliott H.; Loss, Michael, Analysis, Graduate Studies in Mathematics 14, xxii+346 pp. (2001), American Mathematical Society, Providence, RI · Zbl 0966.26002 · doi:10.1090/gsm/014
[24] Lin, Tai-Chia; Wei, Juncheng, Ground state of \(N\) coupled nonlinear Schr\"odinger equations in \({\bf R}^n, n\leq3\), Comm. Math. Phys., 277, 2, 573-576 (2008) · Zbl 1155.35453 · doi:10.1007/s00220-007-0365-5
[25] Lin, Tai-Chia; Wei, Juncheng, Spikes in two coupled nonlinear Schr\`“odinger equations, Ann. Inst. H. Poincar\'”e Anal. Non Lin\'eaire, 22, 4, 403-439 (2005) · Zbl 1080.35143 · doi:10.1016/j.anihpc.2004.03.004
[26] Lin, Tai-Chia; Wei, Juncheng, Spikes in two-component systems of nonlinear Schr\"odinger equations with trapping potentials, J. Differential Equations, 229, 2, 538-569 (2006) · Zbl 1105.35117 · doi:10.1016/j.jde.2005.12.011
[27] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 1, 4, 223-283 (1984) · Zbl 0704.49004
[28] Maeda, Masaya, On the symmetry of the ground states of nonlinear Schr\"odinger equation with potential, Adv. Nonlinear Stud., 10, 4, 895-925 (2010) · Zbl 1223.35133 · doi:10.1515/ans-2010-0409
[29] Maia, L. A.; Montefusco, E.; Pellacci, B., Positive solutions for a weakly coupled nonlinear Schr\"odinger system, J. Differential Equations, 229, 2, 743-767 (2006) · Zbl 1104.35053 · doi:10.1016/j.jde.2006.07.002
[30] Manakov S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Soviet Phys. JETP 38 (1974), 248-253.
[31] McLeod, Kevin; Serrin, James, Uniqueness of positive radial solutions of \(\Delta u+f(u)=0\) in \({\bf R}^n\), Arch. Rational Mech. Anal., 99, 2, 115-145 (1987) · Zbl 0667.35023 · doi:10.1007/BF00275874
[32] PW A. S. Parkins and D. F. Walls, The physics of trapped dilute-gas Bose-Einstein condensates, Phys. Rep. 303 (1998), 1-80.
[33] Reed, Michael; Simon, Barry, Methods of modern mathematical physics. IV. Analysis of operators, xv+396 pp. (1978), Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0401.47001
[34] Royo-Letelier, Jimena, Segregation and symmetry breaking of strongly coupled two-component Bose-Einstein condensates in a harmonic trap, Calc. Var. Partial Differential Equations, 49, 1-2, 103-124 (2014) · Zbl 1283.35101 · doi:10.1007/s00526-012-0571-7
[35] Struwe, Michael, Variational methods, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 34, xx+302 pp. (2008), Springer-Verlag, Berlin · Zbl 1284.49004
[36] Wang, Xuefeng, On concentration of positive bound states of nonlinear Schr\"odinger equations, Comm. Math. Phys., 153, 2, 229-244 (1993) · Zbl 0795.35118
[37] Wei, Juncheng, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations, 129, 2, 315-333 (1996) · Zbl 0865.35011 · doi:10.1006/jdeq.1996.0120
[38] Weinstein, Michael I., Nonlinear Schr\"odinger equations and sharp interpolation estimates, Comm. Math. Phys., 87, 4, 567-576 (1982/83) · Zbl 0527.35023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.