×

Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates. (English) Zbl 1380.35093

This work studies positive minimizers of the Gross-Pitaevskii energy functional \[ E_a(u):=\int_{\mathbb{R}^2}\left(|\nabla u|^2+ V(x)|u|^2\right)dx-\frac{a}{2}\int_{\mathbb{R}^2}|u|^4\, dx \] with \(u\in H^1(\mathbb{R}^2)\), \(\int_{\mathbb{R}^2} V(x)|u|^2\,dx<\infty\), under the constraint \(\left\|u\right\|_2=1\).
The quantity \(a>0\) measures the strength of the attractive interactions, while the nonnegative potential \(V(x)\) is considered to be trapping, i.e. satisfying \(\lim_{|x|\to\infty}V(x)=\infty\), homogeneous of degree \(p\geq 2\), and such that the function \(H(y)=\int_{\mathbb{R}^2} V(x+y)w^2(x)\,dx\), where \(w\) is the unique positive solution of \(-\Delta w=-w+w^3\) in \(\mathbb{R}^2\), has a unique nondegenerate critical point.
It is known that minimizers exist if and only if \(a\) is smaller than the critical value \(a^*:=\left\|w\right\|_2^2\). This works proves, for the first time in the non-radial case, that they are unique for \(a\) close to \(a^*\). In addition, their refined spike profile is determined as \(a\uparrow a^*\).

MSC:

35J60 Nonlinear elliptic equations
35Q40 PDEs in connection with quantum mechanics

References:

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, {\it Observation of Bose-Einstein condensation in a dilute atomic vapor}, Science, 269 (1995), pp. 198-201.
[2] W. Z. Bao and Y. Y. Cai, {\it Mathematical theory and numerical methods for Bose-Einstein condensation}, Kine. Rela. Models, 6 (2013), pp. 1-135. · Zbl 1266.82009
[3] D. M. Cao, S. L. Li, and P. Luo, {\it Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations}, Calc. Var. Partial Differential Equations, 54 (2015), pp. 4037-4063. · Zbl 1338.35404
[4] T. Cazenave, {\it Semilinear Schrödinger Equations}, Courant Lecture Notes in Math. 10, Courant Institute of Mathematical Science/AMS, New York, 2003. · Zbl 1055.35003
[5] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, {\it Theory of Bose-Einstein condensation in trapped gases}, Rev. Modern Phys., 71 (1999), pp. 463-512.
[6] Y. B. Deng, C. S. Lin, and S. Yan, {\it On the prescribed scalar curvature problem in \(\R^N\), local uniqueness and periodicity}, J. Math. Pures Appl., 104 (2015), pp. 1013-1044. · Zbl 1328.53045
[7] B. Gidas, W. M. Ni, and L. Nirenberg, {\it Symmetry of positive solutions of nonlinear elliptic equations in \(\R^n\)}, Mathematical Analysis and Applications Part A, Adv. in Math. Suppl. Stud. vol. 7 (1981), pp. 369-402. · Zbl 0469.35052
[8] D. Gilbarg and N. S. Trudinger, {\it Elliptic Partial Differential Equations of Second Order}, Springer, 1997. · Zbl 1042.35002
[9] M. Grossi, {\it On the number of single-peak solutions of the nonlinear Schrödinger equations}, Ann. Inst H. Poincaré Anal. Non Linéaire, 19 (2002), pp. 261-280. · Zbl 1034.35127
[10] Y. J. Guo and R. Seiringer, {\it On the mass concentration for Bose-Einstein condensates with attractive interactions}, Lett. Math. Phys., 104 (2014), pp. 141-156. · Zbl 1311.35241
[11] Y. J. Guo, Z. Q. Wang, X. Y. Zeng, and H. S. Zhou, {\it Properties for ground states of attractive Gross-Pitaevskii equations with multi-well potentials}, preprint, , 2017. · Zbl 1396.35018
[12] Y. J. Guo, X. Y. Zeng, and H. S. Zhou, {\it Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials}, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), pp. 809-828. · Zbl 1341.35053
[13] Y. Kagan, A. E. Muryshev, and G. V. Shlyapnikov, {\it Collapse and Bose-Einstein condensation in a trapped Bose gas with nagative scattering length}, Phys. Rev. Lett., 81 (1998), pp. 933-937.
[14] M. K. Kwong, {\it Uniqueness of positive solutions of \(Δ u-u+u^p=0\) in \(\R^N\)}, Arch. Rational Mech. Anal., 105 (1989), pp. 243-266. · Zbl 0676.35032
[15] E. H. Lieb and M. Loss, {\it Analysis, Graduate Studies in Mathematics} 14, 2nd ed., American Mathematical Society, 2001.
[16] T. C. Lin and J. C. Wei, {\it Orbital stability of bound states of semiclassical nonlinear Schrödinger equations with critical nonlinearity}, SIAM J. Math. Anal., 40 (2008), pp. 365-381. · Zbl 1170.35538
[17] T. C. Lin, J. C. Wei, and W. Yao, {\it Orbital stability of bound states of nonlinear Schrödinger equations with linear and nonlinear optical lattices}, J. Differential Equations, 249 (2010), pp. 2111-2146. · Zbl 1200.35292
[18] M. Maeda, {\it On the symmetry of the ground states of nonlinear Schrödinger equation with potential}, Adv. Nonlinear Stud., 10 (2010), pp. 895-925. · Zbl 1223.35133
[19] K. McLeod and J. Serrin, {\it Uniqueness of positive radial solutions of \(Δ u +f (u)=0\) in \(\R^n\)}, Arch. Rational Mech. Anal., 99 (1987), pp. 115-145. · Zbl 0667.35023
[20] W.-M. Ni and I. Takagi, {\it On the shape of least-energy solutions to a semilinear Neumann problem}, Comm. Pure Appl. Math., 44 (1991), pp. 819-851. · Zbl 0754.35042
[21] W.-M. Ni and J. C. Wei, {\it On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems}, Comm. Pure Appl. Math., 48 (1995), pp. 731-768. · Zbl 0838.35009
[22] M. Reed and B. Simon, {\it Methods of Modern Mathematical Physics. IV. Analysis of Operators}, Academic Press, 1978. · Zbl 0401.47001
[23] C. A. Sackett, H. T. C. Stoof, and R. G. Hulet, {\it Growth and collapse of a Bose-Einstein condensate with attractive interactions}, Phys. Rev. Lett., 80 (1998), p. 2031.
[24] X. F. Wang, {\it On concentration of positive bound states of nonlinear Schrödinger equations}, Comm. Math. Phys., 153 (1993), pp. 229-244. · Zbl 0795.35118
[25] M. I. Weinstein, {\it Nonlinear Schrödinger equations and sharp interpolations estimates}, Comm. Math. Phys., 87 (1983), pp. 567-576. · Zbl 0527.35023
[26] J. Zhang, {\it Stability of attractive Bose-Einstein condensates}, J. Stat. Phys., 101 (2000), pp. 731-746. · Zbl 0989.82024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.