×

Pattern formation via mixed interactions for coupled Schrödinger equations under Neumann boundary condition. (English) Zbl 1373.35132

This interesting paper is devoted to the asymptotic behavior of positive least energy vector solutions to nonlinear Schrödinger systems with mixed couplings. These systems arise from models in Bose-Einstein condensates and nonlinear optics. The basic problem investigated here is \[ -\triangle u_i+\lambda_iu_i=\mu_iu_{i}^{3}+ \sum\limits_{j\neq i}^{3}\beta_{ij}u_iu_{j}^{2} \;\;\text{in} \;\;\Omega \] under homogeneous Neumann boundary condition \(\partial u_i/\partial\nu =0\) on \(\partial\Omega \) (\(i=1,2,3\)) for the case of mixed couplings. Here \(\Omega \) is a bounded domain with a smooth boundary in \(\mathbb{R}^n\) for \(n\leq 3\), \(\nu \) is the outward unit normal vector on \(\partial \Omega \), \(\lambda_i > 0\), \(\mu_i > 0\) (\(i = 1, 2, 3\)), and \(\beta_{ij} = \beta_{ji} \in \mathbb{R}\). The quantities \(\mu_j\) and \(\beta_{ij}\) are the intraspecies and interspecies scattering lengths, respectively. The sign of \(\beta_{ij}\) determines whether the interactions of states are repulsive or attractive. Here the case \(\beta_{12}>0\), \(\beta_{13}<0\), \(\beta_{23}<0\) is considered. The asymptotic behavior of the system, when both the attractive and the repulsive couplings tend asymptotically to \(\infty \), is investigated. The authors identify the limiting equations and establish energy expansion in this process. A stronger convergence to a limiting system is shown. The existence of a positive least energy vector solution of the considered system satisfying some energy inequality is proved. It turns out that there exists a least energy solution in the class \(H^1(\Omega )\) which attains a solution of a given system of two nonlinear equations, and the radially symmetric positive least energy solution belongs to \(H^1(\mathbb{R}^n)\times H^1(\mathbb{R}^n)\). The least energy solutions exhibit component-wise pattern formations. In particular, co-existence of partial synchronization and segregation is observed.

MSC:

35J61 Semilinear elliptic equations
35J57 Boundary value problems for second-order elliptic systems
Full Text: DOI

References:

[1] Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67-82 (2007) · Zbl 1130.34014 · doi:10.1112/jlms/jdl020
[2] Ambrosetti, A., Colorado, E., Ruiz, D.: Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. Calc. Var. PDEs 30, 85-112 (2007) · Zbl 1123.35015 · doi:10.1007/s00526-006-0079-0
[3] Bartsch, T., Dancer, E.N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. PDEs 37, 345-361 (2010) · Zbl 1189.35074 · doi:10.1007/s00526-009-0265-y
[4] Bartsch, T., Wang, Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Part. Differ. Equ. 19, 200-207 (2006) · Zbl 1104.35048
[5] Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2, 353-367 (2007) · Zbl 1153.35390 · doi:10.1007/s11784-007-0033-6
[6] Byeon, J.: Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains. Commun. P.D.E. 22, 1731-1769 (1997) · Zbl 0883.35040
[7] Byeon, J.: Semi-classical standing waves for nonlinear Schrödinger systems. Calc. Var. Partial Differ. 54, 2287-2340 (2015) · Zbl 1334.35041 · doi:10.1007/s00526-015-0866-6
[8] Byeon, J., Sato, Y., Wang, Z.-Q.: Pattern formation via mixed attractive and repulsive interactions for nonlinear Schrödinger systems. J. Math. Pures Appl. 106(9), 477-511 (2016) · Zbl 1345.35032
[9] Chang, S., Lin, C.S., Lin, T.C., Lin, W.: Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates. Phys. D 196, 341-361 (2004) · Zbl 1098.82602 · doi:10.1016/j.physd.2004.06.002
[10] Conti, M., Terracini, S., Verzini, G.: Nehari’s problem and competing species system. Ann. I. H. Poincaré 19, 871-888 (2002) · Zbl 1090.35076 · doi:10.1016/S0294-1449(02)00104-X
[11] Dancer, E.N., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. I. H. Poincaré 27, 953-969 (2010) · Zbl 1191.35121 · doi:10.1016/j.anihpc.2010.01.009
[12] Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209-243 (1979) · Zbl 0425.35020 · doi:10.1007/BF01221125
[13] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, vol. 224, 2nd edn. Springer, Berlin (1983) · Zbl 0562.35001
[14] Ikoma, N., Tanaka, K.: A local mountain pass type result for a system of nonlinear Schrödinger equations. Calc. Var. Partial Differ. 40, 449-480 (2011) · Zbl 1215.35061 · doi:10.1007/s00526-010-0347-x
[15] Kawohl, B.: Rearrangements and convexity of level sets in PDE. In: Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (1985) · Zbl 0593.35002
[16] Lin, C.-S., Ni, W.-M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72, 1-27 (1988) · Zbl 0676.35030 · doi:10.1016/0022-0396(88)90147-7
[17] Lin, T.-C., Wei, J.: Ground state of \[NN\] coupled nonlinear Schrödinger equations in \[{ R}^n, n\le 3Rn\],n≤3. Commun. Math. Phys. 255, 629-653 (2005) · Zbl 1119.35087 · doi:10.1007/s00220-005-1313-x
[18] Lin, T.-C., Wei, J.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré 22, 403-439 (2005) · Zbl 1080.35143 · doi:10.1016/j.anihpc.2004.03.004
[19] Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part II. Ann. Inst. H. Poincaré 1, 223-283 (1984) · Zbl 0704.49004
[20] Liu, J., Liu, X., Wang, Z.-Q.: Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. PDEs 52, 565-586 (2015) · Zbl 1311.35291
[21] Liu, Z., Wang, Z.-Q.: Multiple bound states of nonlinear Schrödinger systems. Commun. Math. Phys. 282, 721-731 (2008) · Zbl 1156.35093 · doi:10.1007/s00220-008-0546-x
[22] Liu, Z., Wang, Z.-Q.: Ground states and bound states of a nonlinear Schrödinger system. Adv. Nonlinear Stud. 10, 175-193 (2010) · Zbl 1198.35067 · doi:10.1515/ans-2010-0109
[23] Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 299, 743-767 (2006) · Zbl 1104.35053 · doi:10.1016/j.jde.2006.07.002
[24] Mitchell, M., Segev, M.: Self-trapping of inconherent white light. Nature 387, 880-882 (1997) · doi:10.1038/43079
[25] Montefusco, E., Pellacci, B., Squassina, M.: Semiclassical states for weakly coupled nonlinear Schrödinger systems. J. Eur. Math. Soc. 10, 41-71 (2008) · Zbl 1187.35241
[26] Ni, W.-M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 44, 819-851 (1991) · Zbl 0754.35042 · doi:10.1002/cpa.3160440705
[27] Noris, B., Ramos, M.: Existence and bounds of positive solutions for a nonlinear Schrödinger system. Proc. AMS 138, 1681-1692 (2010) · Zbl 1189.35086 · doi:10.1090/S0002-9939-10-10231-7
[28] Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63, 267-302 (2010) · Zbl 1189.35314 · doi:10.1002/cpa.20309
[29] Peng, S., Wang, Z.-Q.: Segregated and Synchronized Vector Solutions for Nonlinear Schrödinger Systems. Arch. Ration. Mech. Anal. 208, 305-339 (2013) · Zbl 1260.35211 · doi:10.1007/s00205-012-0598-0
[30] Rüegg, Ch., et al.: Bose-Einstein condensation of the triple states in the magnetic insulator TlCuCl \[_33\]. Nature 423, 62-65 (2003) · doi:10.1038/nature01617
[31] Sato, Y., Wang, Z.-Q.: On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincare 30, 1-22 (2013) · Zbl 1457.35071 · doi:10.1016/j.anihpc.2012.05.002
[32] Sato, Y., Wang, Z.-Q.: On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete Contin. Dyn. Syst. 35, 2151-2164 (2015) · Zbl 1306.35027 · doi:10.3934/dcds.2015.35.2151
[33] Sato, Y., Wang, Z.-Q.: Least energy solutions for nonlinear Schrödinger systems with mixed attractive and repulsive couplings. Adv. Nonlinear Stud. 15, 1-22 (2015) · Zbl 1316.35269 · doi:10.1515/ans-2015-0101
[34] Sato, Y., Wang, Z.-Q.: Multiple positive solutions for Schrödinger systems with mixed couplings. Calc. Var. PDEs 54, 1373-1392 (2015) · Zbl 1326.35131 · doi:10.1007/s00526-015-0828-z
[35] Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \[{ R}^nRn\]. Commun. Math. Phys. 271, 199-221 (2007) · Zbl 1147.35098 · doi:10.1007/s00220-006-0179-x
[36] Soave, N.: On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition. Calc. Var. PDEs 53, 689-718 (2015) · Zbl 1323.35166 · doi:10.1007/s00526-014-0764-3
[37] Soave, N., Tavares, H.: New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms. J. Differ. Equ. 261, 505-537 (2016) · Zbl 1337.35049 · doi:10.1016/j.jde.2016.03.015
[38] Tavares, H., Terracini, S.: Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems. Ann. Inst. H. Poincare 29, 279-300 (2012) · Zbl 1241.35046 · doi:10.1016/j.anihpc.2011.10.006
[39] Tavares, H., Terracini, S., Verzini, G., Weth, T.: Existence and nonexistence of entire solutions for non-cooperative cubic elliptic systems. Commun. Partial Differ. Equ. 36, 1988-2010 (2011) · Zbl 1235.35089 · doi:10.1080/03605302.2011.574244
[40] Terracini, S., Verzini, G.: Multipulse phase in \[k\] k-mixtures of Bose-Einstein condensates. Arch. Rat. Mech. Anal. 194, 717-741 (2009) · Zbl 1181.35069 · doi:10.1007/s00205-008-0172-y
[41] Tian, R., Wang, Z.-Q.: Multiple solitary wave solutions of nonlinear Schrödinger systems. Topo. Meth. Non. Anal. 37, 203-223 (2011) · Zbl 1255.35101
[42] Wang, Z.-Q.: On the existence of multiple, single-peaked solutions of a semilinear Neumann problem. Arch. Rat. Mech. Anal. 120, 375-399 (1992) · Zbl 0784.35035 · doi:10.1007/BF00380322
[43] Wang, Z.-Q., Willem, M.: Partial symmetry of vector solutions for elliptic systems. Journald’ Analyse Mathematique 122, 69-85 (2014) · Zbl 1298.35206 · doi:10.1007/s11854-014-0003-z
[44] Wei, J., Weth, T.: Nonradial symmetric bound states for a system of two coupled Schrödinger equations. Rend. Lincei Mat. Appl. 18, 279-293 (2007) · Zbl 1229.35019
[45] Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Rat. Mech. Anal. 190, 83-106 (2008) · Zbl 1161.35051
[46] Wei, J., Yao, W.: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 11, 1003-1011 (2012) · Zbl 1264.35237
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.