×

Pattern formation via mixed attractive and repulsive interactions for nonlinear Schrödinger systems. (English. French summary) Zbl 1345.35032

Authors’ abstract: The paper is concerned with the asymptotic behavior of positive least energy vector solutions to nonlinear Schrödinger systems with mixed couplings which arise from models in Bose-Einstein condensates and nonlinear optics. We show that due to mixed attractive and repulsive interactions the least energy solutions exhibit new interesting component-wise pattern formations, including co-existence of partial synchronization an segregation. The novelty of our approach is the successful use of multiple scaling to carry out a refined asymptotic analysis of convergence to a multiply scaled limiting system.

MSC:

35J50 Variational methods for elliptic systems
35J57 Boundary value problems for second-order elliptic systems
35J60 Nonlinear elliptic equations
35Q55 NLS equations (nonlinear Schrödinger equations)
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Ambrosetti, A.; Colorado, E., Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75, 67-82 (2007) · Zbl 1130.34014
[2] Ambrosetti, A.; Colorado, E.; Ruiz, D., Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 30, 85-112 (2007) · Zbl 1123.35015
[3] Bartsch, T.; Dancer, E. N.; Wang, Z.-Q., A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 37, 345-361 (2010) · Zbl 1189.35074
[4] Bartsch, T.; Wang, Z.-Q., Note on ground states of nonlinear Schrödinger systems, J. Partial Differ. Equ., 19, 200-207 (2006) · Zbl 1104.35048
[5] Bartsch, T.; Wang, Z.-Q.; Wei, J., Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2, 353-367 (2007) · Zbl 1153.35390
[6] Byeon, J., Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains, Commun. Partial Differ. Equ., 22, 1731-1769 (1997) · Zbl 0883.35040
[7] Byeon, J., Semi-classical standing waves for nonlinear Schrödinger systems, Calc. Var. Partial Differ. Equ., 54, 2287-2340 (2015) · Zbl 1334.35041
[8] Chang, S.; Lin, C. S.; Lin, T. C.; Lin, W., Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates, Physica D, 196, 341-361 (2004) · Zbl 1098.82602
[9] Conti, M.; Terracini, S.; Verzini, G., Nehari’s problem and competing species system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 19, 871-888 (2002) · Zbl 1090.35076
[10] Dancer, E. N.; Wei, J.; Weth, T., A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 27, 953-969 (2010) · Zbl 1191.35121
[11] Gidas, B.; Ni, W.-M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68, 3, 209-243 (1979) · Zbl 0425.35020
[12] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, vol. 224 (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0691.35001
[13] Ikoma, N.; Tanaka, K., A local mountain pass type result for a system of nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 40, 449-480 (2011) · Zbl 1215.35061
[14] Lin, T.-C.; Wei, J., Ground state of \(N\) coupled nonlinear Schrödinger equations in \(R^n, n \leq 3\), Commun. Math. Phys., 255, 629-653 (2005) · Zbl 1119.35087
[15] Lin, T.-C.; Wei, J., Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 22, 403-439 (2005) · Zbl 1080.35143
[16] Liu, J.; Liu, X.; Wang, Z.-Q., Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differ. Equ., 52, 565-586 (2015) · Zbl 1311.35291
[17] Liu, Z. L.; Wang, Z.-Q., Multiple bound states of nonlinear Schrödinger systems, Commun. Math. Phys., 282, 721-731 (2008) · Zbl 1156.35093
[18] Liu, Z. L.; Wang, Z.-Q., Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud., 10, 175-193 (2010) · Zbl 1198.35067
[19] Maia, L. A.; Montefusco, E.; Pellacci, B., Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differ. Equ., 299, 743-767 (2006) · Zbl 1104.35053
[20] Mitchell, M.; Segev, M., Self-trapping of incoherent white light, Nature, 387, 880-882 (1997)
[21] Montefusco, E.; Pellacci, B.; Squassina, M., Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc., 10, 41-71 (2008) · Zbl 1187.35241
[22] Noris, B.; Ramos, M., Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proc. Am. Math. Soc., 138, 1681-1692 (2010) · Zbl 1189.35086
[23] Noris, B.; Tavares, H.; Terracini, S.; Verzini, G., Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Commun. Pure Appl. Math., 63, 267-302 (2010) · Zbl 1189.35314
[24] Peng, S.; Wang, Z.-Q., Segregated and synchronized vector solutions for nonlinear Schrödinger systems, Arch. Ration. Mech. Anal., 208, 305-339 (2013) · Zbl 1260.35211
[25] Rüegg, Ch., Bose-Einstein condensation of the triple states in the magnetic insulator \(TlCuCl_3\), Nature, 423, 62-65 (2003)
[26] Sato, Y., Multi-peak solutions for nonlinear Schrödinger equations (2007), Waseda University, Thesis
[27] Sato, Y.; Wang, Z.-Q., On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 30, 1-22 (2013) · Zbl 1457.35071
[28] Sato, Y.; Wang, Z.-Q., On the least energy sign-changing solutions for a nonlinear elliptic system, Discrete Contin. Dyn. Syst., 35, 2151-2164 (2015) · Zbl 1306.35027
[29] Sato, Y.; Wang, Z.-Q., Least energy solutions for nonlinear Schrödinger systems with mixed attractive and repulsive couplings, Adv. Nonlinear Stud., 15, 1-22 (2015) · Zbl 1316.35269
[30] Sato, Y.; Wang, Z.-Q., Multiple positive solutions for Schrödinger systems with mixed couplings, Calc. Var. Partial Differ. Equ., 54, 1373-1392 (2015) · Zbl 1326.35131
[31] Sirakov, B., Least energy solitary waves for a system of nonlinear Schrödinger equations in \(R^n\), Commun. Math. Phys., 271, 199-221 (2007) · Zbl 1147.35098
[32] Soave, N., On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition, Calc. Var. Partial Differ. Equ., 53, 689-718 (2015) · Zbl 1323.35166
[33] Soave, N.; Tavares, H., New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms · Zbl 1337.35049
[34] Tavares, H.; Terracini, S., Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 29, 279-300 (2012) · Zbl 1241.35046
[35] Tavares, H.; Terracini, S.; Verzini, G.; Weth, T., Existence and nonexistence of entire solutions for non-cooperative cubic elliptic systems, Commun. Partial Differ. Equ., 36, 1988-2010 (2011) · Zbl 1235.35089
[36] Terracini, S.; Verzini, G., Multipulse phase in \(k\)-mixtures of Bose-Einstein condensates, Arch. Ration. Mech. Anal., 194, 717-741 (2009) · Zbl 1181.35069
[37] Tian, R.; Wang, Z.-Q., Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal., 37, 203-223 (2011) · Zbl 1255.35101
[38] Wang, Z.-Q.; Willem, M., Partial symmetry of vector solutions for elliptic systems, J. Anal. Math., 122, 69-85 (2014) · Zbl 1298.35206
[39] Wei, J.; Weth, T. T., Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18, 279-293 (2007) · Zbl 1229.35019
[40] Wei, J.; Weth, T. T., Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal., 190, 83-106 (2008) · Zbl 1161.35051
[41] Wei, J.; Yao, W., Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11, 1003-1011 (2012) · Zbl 1264.35237
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.