×

Fast conformal bootstrap and constraints on 3d gravity. (English) Zbl 1416.83070

Summary: The crossing equations of a conformal field theory can be systematically truncated to a finite, closed system of polynomial equations. In certain cases, solutions of the truncated equations place strict bounds on the space of all unitary CFTs. We describe the conditions under which this holds, and use the results to develop a fast algorithm for modular bootstrap in 2d CFT. We then apply it to compute spectral gaps to very high precision, find scaling dimensions for over a thousand operators, and extend the numerical bootstrap to the regime of large central charge, relevant to holography. This leads to new bounds on the spectrum of black holes in three-dimensional gravity. We provide numerical evidence that the asymptotic bound on the spectral gap from spinless modular bootstrap, at large central charge \(c\), is \( {\Delta}_1 \lesssim c/9.1 \).

MSC:

83C80 Analogues of general relativity in lower dimensions
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C45 Quantization of the gravitational field
83C57 Black holes

Software:

SDPB

References:

[1] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys.B 241 (1984) 333. · Zbl 0661.17013
[2] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys.91 (2019) 15002 [arXiv:1805.04405] [INSPIRE]. · doi:10.1103/RevModPhys.91.015002
[3] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE]. · Zbl 1329.81324
[4] D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of 4D CFTs, JHEP05 (2012) 110 [arXiv:1109.5176] [INSPIRE]. · doi:10.1007/JHEP05(2012)110
[5] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev.D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE]. · Zbl 1310.82013
[6] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents, J. Stat. Phys.157 (2014) 869 [arXiv:1403.4545] [INSPIRE]. · Zbl 1310.82013
[7] D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP05 (2011) 017 [arXiv:1009.2087] [INSPIRE]. · Zbl 1296.81067
[8] S. El-Showk and M.F. Paulos, Bootstrapping Conformal Field Theories with the Extremal Functional Method, Phys. Rev. Lett.111 (2013) 241601 [arXiv:1211.2810] [INSPIRE]. · doi:10.1103/PhysRevLett.111.241601
[9] D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP03 (2017) 086 [arXiv:1612.08471] [INSPIRE]. · Zbl 1377.81184 · doi:10.1007/JHEP03(2017)086
[10] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising and O(N) Models, JHEP08 (2016) 036 [arXiv:1603.04436] [INSPIRE]. · Zbl 1390.81227
[11] S.M. Chester and S.S. Pufu, Towards bootstrapping QED3, JHEP08 (2016) 019 [arXiv:1601.03476] [INSPIRE]. · Zbl 1390.81498
[12] L. Iliesiu, M. Koloğlu, R. Mahajan, E. Perlmutter and D. Simmons-Duffin, The Conformal Bootstrap at Finite Temperature, JHEP10 (2018) 070 [arXiv:1802.10266] [INSPIRE]. · Zbl 1402.81226 · doi:10.1007/JHEP10(2018)070
[13] L.V. Delacrétaz, T. Hartman, S.A. Hartnoll and A. Lewkowycz, Thermalization, Viscosity and the Averaged Null Energy Condition, JHEP10 (2018) 028 [arXiv:1805.04194] [INSPIRE]. · Zbl 1402.83036 · doi:10.1007/JHEP10(2018)028
[14] S. El-Showk and M.F. Paulos, Extremal bootstrapping: go with the flow, JHEP03 (2018) 148 [arXiv:1605.08087] [INSPIRE]. · Zbl 1388.81656 · doi:10.1007/JHEP03(2018)148
[15] S. Hellerman, A Universal Inequality for CFT and Quantum Gravity, JHEP08 (2011) 130 [arXiv:0902.2790] [INSPIRE]. · Zbl 1298.83051 · doi:10.1007/JHEP08(2011)130
[16] M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett.69 (1992) 1849 [hep-th/9204099] [INSPIRE]. · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[17] D. Friedan and C.A. Keller, Constraints on 2d CFT partition functions, JHEP10 (2013) 180 [arXiv:1307.6562] [INSPIRE]. · Zbl 1342.81361
[18] S. Collier, Y.-H. Lin and X. Yin, Modular Bootstrap Revisited, JHEP09 (2018) 061 [arXiv:1608.06241] [INSPIRE]. · Zbl 1398.83044 · doi:10.1007/JHEP09(2018)061
[19] Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE]. · doi:10.1007/JHEP11(2013)140
[20] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE]. · Zbl 1342.83239 · doi:10.1007/JHEP12(2013)004
[21] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE]. · doi:10.1088/1126-6708/2009/10/079
[22] B. Mukhametzhanov and A. Zhiboedov, Analytic Euclidean Bootstrap, arXiv:1808.03212 [INSPIRE]. · Zbl 1427.81142
[23] F. Gliozzi, More constraining conformal bootstrap, Phys. Rev. Lett.111 (2013) 161602 [arXiv:1307.3111] [INSPIRE]. · doi:10.1103/PhysRevLett.111.161602
[24] F. Gliozzi and A. Rago, Critical exponents of the 3d Ising and related models from Conformal Bootstrap, JHEP10 (2014) 042 [arXiv:1403.6003] [INSPIRE].
[25] W. Li, New method for the conformal bootstrap with OPE truncations, arXiv:1711.09075 [INSPIRE].
[26] D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal Bootstrap, JHEP06 (2015) 174 [arXiv:1502.02033] [INSPIRE]. · doi:10.1007/JHEP06(2015)174
[27] E. Witten, Three-Dimensional Gravity Revisited, arXiv:0706.3359 [INSPIRE]. · Zbl 0768.53042
[28] A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP02 (2010) 029 [arXiv:0712.0155] [INSPIRE]. · Zbl 1270.83022 · doi:10.1007/JHEP02(2010)029
[29] C.A. Keller and A. Maloney, Poincaré Series, 3D Gravity and CFT Spectroscopy, JHEP02 (2015) 080 [arXiv:1407.6008] [INSPIRE]. · Zbl 1388.83124
[30] T. Hartman, C.A. Keller and B. Stoica, Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP09 (2014) 118 [arXiv:1405.5137] [INSPIRE]. · Zbl 1333.81368
[31] J.D. Qualls and A.D. Shapere, Bounds on Operator Dimensions in 2D Conformal Field Theories, JHEP05 (2014) 091 [arXiv:1312.0038] [INSPIRE].
[32] S. Hellerman and C. Schmidt-Colinet, Bounds for State Degeneracies in 2D Conformal Field Theory, JHEP08 (2011) 127 [arXiv:1007.0756] [INSPIRE]. · Zbl 1298.81215
[33] C.A. Keller and H. Ooguri, Modular Constraints on Calabi-Yau Compactifications, Commun. Math. Phys.324 (2013) 107 [arXiv:1209.4649] [INSPIRE]. · Zbl 1276.81095 · doi:10.1007/s00220-013-1797-8
[34] C.-M. Chang and Y.-H. Lin, Bootstrapping 2D CFTs in the Semiclassical Limit, JHEP08 (2016) 056 [arXiv:1510.02464] [INSPIRE]. · Zbl 1390.81250
[35] E. Shaghoulian, Modular forms and a generalized Cardy formula in higher dimensions, Phys. Rev.D 93 (2016) 126005 [arXiv:1508.02728] [INSPIRE].
[36] H. Kim, P. Kravchuk and H. Ooguri, Reflections on Conformal Spectra, JHEP04 (2016) 184 [arXiv:1510.08772] [INSPIRE].
[37] N. Benjamin, E. Dyer, A.L. Fitzpatrick and S. Kachru, Universal Bounds on Charged States in 2d CFT and 3d Gravity, JHEP08 (2016) 041 [arXiv:1603.09745] [INSPIRE]. · Zbl 1390.83244
[38] D. Das, S. Datta and S. Pal, Charged structure constants from modularity, JHEP11 (2017) 183 [arXiv:1706.04612] [INSPIRE]. · Zbl 1383.81202 · doi:10.1007/JHEP11(2017)183
[39] M. Cho, S. Collier and X. Yin, Genus Two Modular Bootstrap, JHEP04 (2019) 022 [arXiv:1705.05865] [INSPIRE]. · Zbl 1415.81076 · doi:10.1007/JHEP04(2019)022
[40] E. Dyer, A.L. Fitzpatrick and Y. Xin, Constraints on Flavored 2d CFT Partition Functions, JHEP02 (2018) 148 [arXiv:1709.01533] [INSPIRE]. · Zbl 1387.81312
[41] L. Apolo, Bounds on CFTs with W3algebras and AdS3higher spin theories, Phys. Rev.D 96 (2017) 086003 [arXiv:1705.10402] [INSPIRE].
[42] N. Afkhami-Jeddi, K. Colville, T. Hartman, A. Maloney and E. Perlmutter, Constraints on higher spin CFT2, JHEP05 (2018) 092 [arXiv:1707.07717] [INSPIRE]. · Zbl 1391.83083
[43] J.-B. Bae, S. Lee and J. Song, Modular Constraints on Conformal Field Theories with Currents, JHEP12 (2017) 045 [arXiv:1708.08815] [INSPIRE]. · Zbl 1383.81177 · doi:10.1007/JHEP12(2017)045
[44] S. Collier, P. Kravchuk, Y.-H. Lin and X. Yin, Bootstrapping the Spectral Function: On the Uniqueness of Liouville and the Universality of BTZ, JHEP09 (2018) 150 [arXiv:1702.00423] [INSPIRE]. · Zbl 1398.81202 · doi:10.1007/JHEP09(2018)150
[45] J.-B. Bae, S. Lee and J. Song, Modular Constraints on Superconformal Field Theories, JHEP01 (2019) 209 [arXiv:1811.00976] [INSPIRE]. · Zbl 1409.81138 · doi:10.1007/JHEP01(2019)209
[46] T. Anous, R. Mahajan and E. Shaghoulian, Parity and the modular bootstrap, SciPost Phys.5 (2018) 022 [arXiv:1803.04938] [INSPIRE]. · doi:10.21468/SciPostPhys.5.3.022
[47] T. Hartman, D. Mazac and L. Rastelli, to appear.
[48] A. Castedo Echeverri, B. von Harling and M. Serone, The Effective Bootstrap, JHEP09 (2016) 097 [arXiv:1606.02771] [INSPIRE]. · doi:10.1007/JHEP09(2016)097
[49] V. Gorbenko, S. Rychkov and B. Zan, Walking, Weak first-order transitions and Complex CFTs, JHEP10 (2018) 108 [arXiv:1807.11512] [INSPIRE]. · Zbl 1402.81220 · doi:10.1007/JHEP10(2018)108
[50] N. Arkani-Hamed, Y.-T. Huang and S.-H. Shao, On the Positive Geometry of Conformal Field Theory, arXiv:1812.07739 [INSPIRE]. · Zbl 1416.81133
[51] A. Pinkus, Spectral properties of totally positive kernels and matrices, in Total positivity and its applications, Springer, Heidelberg Germany (1996), pg. 477. · Zbl 0891.45001
[52] A. Belin, C.A. Keller and A. Maloney, String Universality for Permutation Orbifolds, Phys. Rev.D 91 (2015) 106005 [arXiv:1412.7159] [INSPIRE]. · Zbl 1357.81150
[53] C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE]. · Zbl 1117.81117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.