×

Walking, weak first-order transitions, and complex CFTs. (English) Zbl 1402.81220

Summary: We discuss walking behavior in gauge theories and weak first-order phase transitions in statistical physics. Despite appearing in very different systems (QCD below the conformal window, the Potts model, deconfined criticality) these two phenomena both imply approximate scale invariance in a range of energies and have the same RG interpretation: a flow passing between pairs of fixed point at complex coupling. We discuss what distinguishes a real theory from a complex theory and call these fixed points complex CFTs. By using conformal perturbation theory we show how observables of the walking theory are computable by perturbing the complex CFTs. This paper discusses the general mechanism while a companion paper [the first author et al., “Walking, weak first-order transitions, and complex CFTs. II: Two-dimensional Potts model at \(Q>4\)”, SciPost Phys. 5, No. 5, Paper No. 50, 36 p. (2018; doi:10.21468/scipostphys.5.5.050)] will treat a specific and computable example: the two-dimensional \(Q\)-state Potts model with \(Q > 4\). Concerning walking in 4d gauge theories, we also comment on the (un)likelihood of the light pseudo-dilaton, and on non-minimal scenarios of the conformal window termination.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T17 Renormalization group methods applied to problems in quantum field theory
81T25 Quantum field theory on lattices

References:

[1] V. Gorbenko, S. Rychkov and B. Zan, Walking, weak first-order transitions and complex CFTs II. Two-dimensional Potts model at Q〉4, arXiv:1808.04380 [INSPIRE].
[2] Holdom, B., Raising the sideways scale, Phys. Rev., D 24, 1441, (1981)
[3] Yamawaki, K.; Bando, M.; Matumoto, K-I, Scale invariant technicolor model and a technidilaton, Phys. Rev. Lett., 56, 1335, (1986) · doi:10.1103/PhysRevLett.56.1335
[4] Appelquist, TW; Karabali, D.; Wijewardhana, LCR, Chiral hierarchies and the flavor changing neutral current problem in technicolor, Phys. Rev. Lett., 57, 957, (1986) · doi:10.1103/PhysRevLett.57.957
[5] D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality lost, Phys. Rev.D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE]. · Zbl 1184.81127
[6] Luty, MA, Strong conformal dynamics at the LHC and on the lattice, JHEP, 04, 050, (2009) · doi:10.1088/1126-6708/2009/04/050
[7] Nauenberg, M.; Scalapino, DJ, Singularities and scaling functions at the Potts model multicritical point, Phys. Rev. Lett., 44, 837, (1980) · doi:10.1103/PhysRevLett.44.837
[8] Cardy, JL; Nauenberg, M.; Scalapino, DJ, Scaling theory of the Potts model multicritical point, Phys. Rev., B 22, 2560, (1980) · doi:10.1103/PhysRevB.22.2560
[9] M.A. Luty and T. Okui, Conformal technicolor, JHEP09 (2006) 070 [hep-ph/0409274] [INSPIRE].
[10] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., Bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031, (2008) · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[11] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B59 (1980) 135.
[12] F.Y. Wu, The Potts model, Rev. Mod. Phys.54 (1982) 235 [Erratum ibid.55 (1983) 315] [INSPIRE].
[13] J.L. Jacobsen, Loop models and boundary CFT, in Conformal invariance: an introduction to loops, interfaces and stochastic Loewner evolution, M. Henkel and D. Karevski eds., Springer, Berlin Germany (2012).
[14] C.M. Fortuin and P.W. Kasteleyn, On the random cluster model. 1. Introduction and relation to other models, Physica57 (1972) 536 [INSPIRE].
[15] Biskup, M., Reflection positivity of the random-cluster measure invalidated for noninteger q, J. Stat. Phys., 92, 369, (1998) · Zbl 0963.82019 · doi:10.1023/A:1023076202262
[16] G. Grimmett, The random-cluster model, Grundlehren der mathematischen Wissenschaften. Springer, Berlin Germany (2006). · Zbl 1122.60087
[17] Baxter, RJ, Potts model at critical temperature, J. Phys., C 6, l445, (1973)
[18] Nienhuis, B.; Berker, AN; Riedel, EK; Schick, M., First and second order phase transitions in Potts models: renormalization-group solution, Phys. Rev. Lett., 43, 737, (1979) · doi:10.1103/PhysRevLett.43.737
[19] Vernier, E.; Jacobsen, JL; Salas, J., Q-colourings of the triangular lattice: exact exponents and conformal field theory, J. Phys., A 49, 174004, (2016) · Zbl 1355.82010
[20] R.J. Baxter, Exactly solved models in statistical mechanics, Academic Press, New Yor U.S.A. (1982). · Zbl 0538.60093
[21] Saleur, H., Zeroes of chromatic polynomials: a new approach to Beraha conjecture using quantum groups, Comm. Math. Phys., 132, 657, (1990) · Zbl 0708.05024 · doi:10.1007/BF02156541
[22] P. Deligne, La Catégorie des Représentations du Groupe Symétrique S_{\(t\)}, lorsque t nest pas un Entier Naturel, in the proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces, January, TIFR, Mumbai, India (2007).
[23] P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor categories, American Mathematical Society, U.S.A. (2016). · Zbl 1365.18001
[24] Buffenoir, E.; Wallon, S., The correlation length of the Potts model at the first order transition point, J. Phys., A 26, 3045, (1993)
[25] Nahum, A.; etal., Deconfined quantum criticality, scaling violations and classical loop models, Phys. Rev., X 5, (2015) · doi:10.1103/PhysRevX.5.041048
[26] C. Wang et al., Deconfined quantum critical points: symmetries and dualities, Phys. Rev.X 7 (2017) 031051 [arXiv:1703.02426] [INSPIRE].
[27] S. Iino, S. Morita, A. W. Sandvik and N. Kawashima, Detecting signals of weakly first-order phase transitions in two-dimensional Potts models, arXiv:1801.02786.
[28] Blume, M.; Emery, VJ; Griffiths, RB, Ising model for the λ transition and phase separation in He3-He4 mixtures, Phys. Rev., A 4, 1071, (1971) · doi:10.1103/PhysRevA.4.1071
[29] A.N. Berker and M. Wortis, Blume-Emery-Griffiths-Potts model in two dimensions: phase diagram and critical properties from a position-space renormalization group, Phys. Rev.B 14 (1976) 4946 [INSPIRE].
[30] X. Qian, Y. Deng and H.W.J. Blöte, Dilute Potts model in two dimensions, Phys. Rev.E 72 (2005) 056132.
[31] Francesco, P.; Saleur, H.; Zuber, JB, Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models, J. Stat. Phys., 49, 57, (1987) · Zbl 0960.82507 · doi:10.1007/BF01009954
[32] Nijs, MPM, A relation between the temperature exponents of the eight-vertex and q-state Potts model, J. Phys., A 12, 1857, (1979)
[33] J.L. Black and V.J. Emery, Critical properties of two-dimensional models, Phys. Rev.B 23 (1981) 429.
[34] Nienhuis, B., Analytical calculation of two leading exponents of the dilute Potts model, J. Phys. A, 15, 199, (1982) · doi:10.1088/0305-4470/15/1/028
[35] Belavin, AA; Migdal, AA, Calculation of anomalous dimensions in non-abelian gauge field theories, JETP Lett., 19, 181, (1974)
[36] Caswell, WE, Asymptotic behavior of nonabelian gauge theories to two loop order, Phys. Rev. Lett., 33, 244, (1974) · doi:10.1103/PhysRevLett.33.244
[37] Banks, T.; Zaks, A., On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys., B 196, 189, (1982) · doi:10.1016/0550-3213(82)90035-9
[38] Nogradi, D.; Patella, A., Strong dynamics, composite Higgs and the conformal window, Int. J. Mod. Phys., A 31, 1643003, (2016) · Zbl 1345.81145 · doi:10.1142/S0217751X1643003X
[39] Giombi, S.; Klebanov, IR; Tarnopolsky, G., Conformal QED_{d}, F-theorem and the ϵ expansion, J. Phys., A 49, 135403, (2016) · Zbl 1348.81454
[40] Gukov, S., RG flows and bifurcations, Nucl. Phys., B 919, 583, (2017) · Zbl 1361.81102 · doi:10.1016/j.nuclphysb.2017.03.025
[41] Karthik, N.; Narayanan, R., Scale-invariance of parity-invariant three-dimensional QED, Phys. Rev., D 94, (2016)
[42] Karthik, N.; Narayanan, R., Scale-invariance and scale-breaking in parity-invariant three-dimensional QCD, Phys. Rev., D 97, (2018)
[43] H. Gies and J. Jaeckel, Chiral phase structure of QCD with many flavors, Eur. Phys. J.C 46 (2006) 433 [hep-ph/0507171] [INSPIRE].
[44] Miransky, VA, Dynamics of spontaneous chiral symmetry breaking and the continuum limit in quantum electrodynamics, Nuovo Cim., 90, 149, (1985) · doi:10.1007/BF02724229
[45] Dymarsky, A.; Klebanov, IR; Roiban, R., Perturbative search for fixed lines in large N gauge theories, JHEP, 08, 011, (2005) · doi:10.1088/1126-6708/2005/08/011
[46] Cohen, AG; Georgi, H., Walking beyond the rainbow, Nucl. Phys., B 314, 7, (1989) · doi:10.1016/0550-3213(89)90109-0
[47] D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP05 (2012) 110 [arXiv:1109.5176] [INSPIRE].
[48] D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, arXiv:1805.04405 [INSPIRE].
[49] DeGrand, T., Lattice tests of beyond standard model dynamics, Rev. Mod. Phys., 88, (2016) · doi:10.1103/RevModPhys.88.015001
[50] Coradeschi, F.; etal., A naturally light dilaton, JHEP, 11, 057, (2013) · doi:10.1007/JHEP11(2013)057
[51] Baggio, M.; etal., Decoding a three-dimensional conformal manifold, JHEP, 02, 062, (2018) · Zbl 1387.81304 · doi:10.1007/JHEP02(2018)062
[52] W.A. Bardeen, M. Moshe and M. Bander, Spontaneous breaking of scale invariance and the ultraviolet fixed point in O(\(n\)) symmetric (ϕ6in three-dimensions) theory, Phys. Rev. Lett.52 (1984) 1188 [INSPIRE].
[53] David, F.; Kessler, DA; Neuberger, H., A study of (ϕ2)3 in three-dimensions at N = ∞, Nucl. Phys., B 257, 695, (1985) · doi:10.1016/0550-3213(85)90371-2
[54] Omid, H.; Semenoff, GW; Wijewardhana, LCR, Light dilaton in the large N tricritical O(N) model, Phys. Rev., D 94, 125017, (2016)
[55] G. Delfino and J.L. Cardy, The field theory of the q → 4+Potts model, Phys. Lett.B 483 (2000) 303 [hep-th/0002122] [INSPIRE]. · Zbl 1031.82502
[56] Lattice Strong Dynamics collaboration, T. Appelquist et al., Nonperturbative investigations of SU(3) gauge theory with eight dynamical flavors, arXiv:1807.08411 [INSPIRE].
[57] Seiberg, N., Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys., B 435, 129, (1995) · Zbl 1020.81912 · doi:10.1016/0550-3213(94)00023-8
[58] Ryttov, TA; Shrock, R., Physics of the non-Abelian Coulomb phase: Insights from Padé approximants, Phys. Rev., D 97, (2018)
[59] Aharony, A., Critical behavior of anisotropic cubic systems, Phys. Rev., B 8, 4270, (1973) · doi:10.1103/PhysRevB.8.4270
[60] A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept.368 (2002) 549 [cond-mat/0012164] [INSPIRE]. · Zbl 0997.82019
[61] Senthil, T.; etal., Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm, Phys. Rev., B 70, 144407, (2004) · doi:10.1103/PhysRevB.70.144407
[62] Nahum, A.; etal., Emergent SO(5) Symmetry at the Néel to Valence-Bond-Solid transition, Phys. Rev. Lett., 115, 267203, (2015) · doi:10.1103/PhysRevLett.115.267203
[63] Nakayama, Y.; Ohtsuki, T., Conformal bootstrap dashing hopes of emergent symmetry, Phys. Rev. Lett., 117, 131601, (2016) · doi:10.1103/PhysRevLett.117.131601
[64] D. Simmons-Duffin, private communication (2016).
[65] Y. Nakayama, private communication (2016).
[66] B. Zhao, P. Weinberg, and A.W. Sandvik, Symmetry enhanced first-order phase transition in a two-dimensional quantum magnet, arXiv:1804.07115.
[67] P. Serna and A. Nahum, Emergence and spontaneous breaking of approximate O(4) symmetry at a weakly first-order deconfined phase transition, arXiv:1805.03759 [INSPIRE].
[68] R. Haag, Local quantum physics: fields, particles, algebras, Springer, Berlin Germany (1992). · Zbl 0777.46037 · doi:10.1007/978-3-642-97306-2
[69] Maldacena, J.; Zhiboedov, A., Constraining conformal field theories with a higher spin symmetry, J. Phys., A 46, 214011, (2013) · Zbl 1339.81089
[70] Hogervorst, M.; Rychkov, S.; Rees, BC, Truncated conformal space approach in d dimensions: a cheap alternative to lattice field theory?, Phys. Rev., D 91, (2015)
[71] Hogervorst, M.; Rychkov, S.; Rees, BC, Unitarity violation at the Wilson-Fisher fixed point in 4 − ϵ dimensions, Phys. Rev., D 93, 125025, (2016)
[72] Fisher, ME, Yang-Lee edge singularity and ϕ3 field theory, Phys. Rev. Lett., 40, 1610, (1978) · doi:10.1103/PhysRevLett.40.1610
[73] Cardy, JL, Conformal invariance and the Yang-Lee edge singularity in two-dimensions, Phys. Rev. Lett., 54, 1354, (1985) · doi:10.1103/PhysRevLett.54.1354
[74] Dotsenko, VS; Fateev, VA, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys., B 240, 312, (1984) · doi:10.1016/0550-3213(84)90269-4
[75] Dotsenko, VS; Fateev, VA, Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c < 1, Nucl. Phys., B 251, 691, (1985) · doi:10.1016/S0550-3213(85)80004-3
[76] Pietro, L.; Stamou, E., Operator mixing in the ϵ-expansion: scheme and evanescent-operator independence, Phys. Rev., D 97, (2018)
[77] Weinrib, A.; Halperin, BI, Critical phenomena in systems with long-range-correlated quenched disorder, Phys. Rev., B 27, 413, (1983) · doi:10.1103/PhysRevB.27.413
[78] Leurent, S.; Volin, D., Multiple zeta functions and double wrapping in planar N = 4 SYM, Nucl. Phys., B 875, 757, (2013) · Zbl 1331.81276 · doi:10.1016/j.nuclphysb.2013.07.020
[79] E. Frenkel, A. Losev and N. Nekrasov, Instantons beyond topological theory. I, hep-th/0610149 [INSPIRE]. · Zbl 1230.81050
[80] Gerchkovitz, E.; Gomis, J.; Komargodski, Z., Sphere partition functions and the Zamolodchikov metric, JHEP, 11, 001, (2014) · Zbl 1333.81171 · doi:10.1007/JHEP11(2014)001
[81] Bobev, N.; etal., Holography for \( \mathcal{N}={1}^{⁎ } \) on S4, JHEP, 10, 095, (2016) · Zbl 1390.83376 · doi:10.1007/JHEP10(2016)095
[82] Fei, L.; Giombi, S.; Klebanov, IR, Critical O(N) models in 6 − ϵ dimensions, Phys. Rev., D 90, (2014)
[83] Fei, L.; Giombi, S.; Klebanov, IR; Tarnopolsky, G., Three loop analysis of the critical O(N) models in 6 − ϵ dimensions, Phys. Rev., D 91, (2015)
[84] Giombi, S.; Klebanov, IR; Tarnopolsky, G., Bosonic tensor models at large N and small ϵ, Phys. Rev., D 96, 106014, (2017)
[85] S. Giombi et al., Prismatic large N models for bosonic tensors, arXiv:1808.04344 [INSPIRE].
[86] Gürdoğan, Ö; Kazakov, V., New integrable 4D quantum field theories from strongly deformed planar \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory, Phys. Rev. Lett., 117, 201602, (2016) · doi:10.1103/PhysRevLett.117.201602
[87] D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-deformed\( \mathcal{N}=4 \)supersymmetric Yang-Mills theory as an integrable conformal field theory, Phys. Rev. Lett.120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].
[88] J.L. Cardy, Scaling and renormalization in statistical physics, Cambridge University Press, Cambridge, U.K. (1996). · Zbl 0914.60002 · doi:10.1017/CBO9781316036440
[89] Z. Komargodski and D. Simmons-Duffin, The Random-Bond Ising model in 2\(.\)01 and 3 dimensions, J. Phys.A 50 (2017) 154001 [arXiv:1603.04444] [INSPIRE]. · Zbl 1366.82009
[90] Z. Komargodski, Space of CFTsExercise 1, http://bootstrap.ictp-saifr.org/wp-content-uploads/2017/05/CPT-Exercise-1.pdf (2017).
[91] Binder, K., Theory of first-order phase transitions, Rept. Progr. Phys., 50, 783, (1987) · doi:10.1088/0034-4885/50/7/001
[92] L. Landau and E. Lifshitz, Statistical physics, Elsevier Science, Amsterdam, The Netherlands (2013). · JFM 64.0887.01
[93] A.B. Zamolodchikov, Conformal symmetry and multicritical points in two-dimensional quantum field theory (in Russian), Sov. J. Nucl. Phys.44 (1986) 529 [INSPIRE].
[94] N. Amoruso, Renormalization group flows between non-unitary conformal models, Master thesis, Università di Bologna, Bologna, Italy (2016).
[95] Zia, RKP; Wallace, DJ, Critical behavior of the continuous N component Potts model, J. Phys., A 8, 1495, (1975)
[96] Amit, DJ, Renormalization of the Potts model, J. Phys., A 9, 1441, (1976)
[97] Ginsparg, PH; Goldschmidt, YY; Zuber, J-B, Large q expansions for q state gauge matter Potts models in lagrangian form, Nucl. Phys., B 170, 409, (1980) · doi:10.1016/0550-3213(80)90419-8
[98] J. Kogut and D. Sinclair, 1/q-expansions for the lagrangian formulation of three-dimensional potts models, Solid State Commun.s41 (1982) 187.
[99] Kogut, JB; Sinclair, D., 1/q expansions for potts models in all dimensions, Phys. Lett., A 86, 38, (1981) · doi:10.1016/0375-9601(81)90682-4
[100] Kim, D., 1/q-expansion for the magnetization discontinuity of potts model in two dimensions, Phys. Lett., A 87, 127, (1981) · doi:10.1016/0375-9601(81)90581-8
[101] Park, H.; Kim, D., Large q expansion of the Potts model susceptibility and magnetization in Two and Three dimensions, J. Korean Phys. Soc., 15, 55, (1982)
[102] T. Bhattacharya, R. Lacaze and A. Morel, Large q expansion of the 2D q states Potts model, J. Phys. I(France)7 (1997) 81 [hep-lat/9601012] [INSPIRE].
[103] Laanait, L.; etal., Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation, Comm. Math. Phys., 140, 81, (1991) · Zbl 0734.60108 · doi:10.1007/BF02099291
[104] Duminil-Copin, H.; Sidoravicius, V.; Tassion, V., Continuity of the phase transition for planar random-cluster and Potts models with 1 ≤ q ≤ 4, Commun. Math. Phys., 349, 47, (2017) · Zbl 1357.82011 · doi:10.1007/s00220-016-2759-8
[105] H. Duminil-Copin et al., Discontinuity of the phase transition for the planar random-cluster and Potts models with q > 4, arXiv:1611.09877.
[106] J. Lee and J.M. Kosterlitz, Three-dimensional q-state Potts model: Monte Carlo study near q = 3, Phys. Rev.B 43 (1991) 1268.
[107] B. Nienhuis, E.K. Riedel and M. Schick, q-state potts model in general dimension, Phys. Rev.B 23 (1981) 6055.
[108] Newman, KE; Riedel, EK; Muto, S., Q-state potts model by Wilson’s exact renormalization group equation, Phys. Rev., B 29, 302, (1984) · doi:10.1103/PhysRevB.29.302
[109] Janke, W.; Villanova, R., Three-dimensional 3-state potts model revisited with new techniques, Nucl. Phys., B 489, 679, (1997) · Zbl 0925.82048 · doi:10.1016/S0550-3213(96)00710-9
[110] Gubser, SS; Klebanov, IR, A universal result on central charges in the presence of double trace deformations, Nucl. Phys., B 656, 23, (2003) · Zbl 1011.81067 · doi:10.1016/S0550-3213(03)00056-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.