×

On the positive geometry of conformal field theory. (English) Zbl 1416.81133

Summary: It has long been clear that the conformal bootstrap is associated with a rich geometry. In this paper we undertake a systematic exploration of this geometric structure as an object of study in its own right. We study conformal blocks for the minimal SL(2, \(R\)) symmetry present in conformal field theories in all dimensions. Unitarity demands that the Taylor coefficients of the four-point function lie inside a polytope \(\mathrm{\mathbf{U}}\) determined by the operator spectrum, while crossing demands they lie on a plane \(\mathrm{\mathbf{X}}\). The conformal bootstrap is then geometrically interpreted as demanding a non-empty intersection of \(\mathrm{\mathbf{U}} \cap \mathrm{\mathbf{X}}\). We find that the conformal blocks enjoy a surprising positive determinant property. This implies that \(\mathrm{\mathbf{U}}\) is an example of a famous polytope – the cyclic polytope. The face structure of cyclic polytopes is completely understood. This lets us fully characterize the intersection \(\mathrm{\mathbf{U}} \cap \mathrm{\mathbf{X}}\) by a simple combinatorial rule, leading to a number of new exact statements about the spectrum and four-point function in any conformal field theory.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
53Z05 Applications of differential geometry to physics

References:

[1] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [INSPIRE].
[2] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE]. · Zbl 1329.81324
[3] S. Rychkov, EPFL lectures on conformal field theory in D ≥ 3 dimensions, Springer Briefs in Physics, Springer, Germany (2016).
[4] D. Simmons-Duffin, The conformal bootstrap, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), June 1-26, Boulder U.S.A. (2015), arXiv:1602.07982 [INSPIRE].
[5] D. Poland and D. Simmons-Duffin, The conformal bootstrap, Nature Phys.12 (2016) 535. · doi:10.1038/nphys3761
[6] D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, Rev. Mod. Phys.91 (2019) 15002 [arXiv:1805.04405] [INSPIRE]. · doi:10.1103/RevModPhys.91.015002
[7] N. Arkani-Hamed and J. Trnka, The amplituhedron, JHEP10 (2014) 030 [arXiv:1312.2007] [INSPIRE]. · Zbl 1468.81075
[8] B. Czech et al., A stereoscopic look into the bulk, JHEP07 (2016) 129 [arXiv:1604.03110] [INSPIRE]. · Zbl 1390.83101 · doi:10.1007/JHEP07(2016)129
[9] P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP11 (2018) 102 [arXiv:1805.00098] [INSPIRE]. · Zbl 1404.81234 · doi:10.1007/JHEP11(2018)102
[10] D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP03 (2014) 100 [arXiv:1310.5078] [INSPIRE].
[11] M.F. Paulos et al., The S-matrix bootstrap. Part I: QFT in AdS, JHEP11 (2017) 133 [arXiv:1607.06109] [INSPIRE]. · Zbl 1383.81251
[12] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
[13] M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP11 (2017) 193 [arXiv:1702.08471] [INSPIRE]. · Zbl 1383.81231 · doi:10.1007/JHEP11(2017)193
[14] J. Qiao and S. Rychkov, Cut-touching linear functionals in the conformal bootstrap, JHEP06 (2017) 076 [arXiv:1705.01357] [INSPIRE]. · Zbl 1380.81357 · doi:10.1007/JHEP06(2017)076
[15] J. Qiao and S. Rychkov, A tauberian theorem for the conformal bootstrap, JHEP12 (2017) 119 [arXiv:1709.00008] [INSPIRE]. · Zbl 1383.81253 · doi:10.1007/JHEP12(2017)119
[16] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I. 1D CFTs and 2D S-matrices, JHEP02 (2019) 162 [arXiv:1803.10233] [INSPIRE].
[17] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part II. Natural bases for the crossing equation, JHEP02 (2019) 163 [arXiv:1811.10646] [INSPIRE].
[18] D. Mazáč, A crossing-symmetric OPE inversion formula, arXiv:1812.02254 [INSPIRE]. · Zbl 1416.81162
[19] P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping the half-BPS line defect, JHEP10 (2018) 077 [arXiv:1806.01862] [INSPIRE]. · Zbl 1402.81247 · doi:10.1007/JHEP10(2018)077
[20] M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP04 (2016) 091 [arXiv:1601.02883] [INSPIRE]. · Zbl 1388.81029
[21] F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE]. · Zbl 1097.81735
[22] D. Mazac, Analytic bounds and emergence of AdS2physics from the conformal bootstrap, JHEP04 (2017) 146 [arXiv:1611.10060] [INSPIRE]. · Zbl 1378.81121
[23] B. Grunbaum et al., Convex polytopes, Springer, Germany (2003). · Zbl 1024.52001
[24] N. Arkani-Hamed et al., Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge U.K. (2016). · Zbl 1365.81004
[25] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE]. · Zbl 1342.81291 · doi:10.1007/JHEP05(2013)135
[26] S. Karlin and W. Studden, Tchebycheff systems: with applications in analysis and statistics, Pure and applied mathematics, Interscience Publishers, Geneva, Switzerland (1966). · Zbl 0153.38902
[27] N. Arkani-Hamed, H. Thomas and J. Trnka, Unwinding the amplituhedron in binary, JHEP01 (2018) 016 [arXiv:1704.05069] [INSPIRE]. · Zbl 1384.81130 · doi:10.1007/JHEP01(2018)016
[28] D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE]. · Zbl 1333.83125 · doi:10.1007/JHEP04(2014)146
[29] S. Ferrara, R. Gatto and A.F. Grillo, Properties of partial wave amplitudes in conformal invariant field theories, Nuovo Cim.A 26 (1975) 226 [INSPIRE].
[30] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE]. · Zbl 1097.81734
[31] F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE]. · Zbl 1097.81735
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.