×

Instabilities of thin black rings: closing the gap. (English) Zbl 1415.83010

Summary: We initiate the study of dynamical instabilities of higher-dimensional black holes using the blackfold approach, focusing on asymptotically flat boosted black strings and singly-spinning black rings in \(D \ge 5 \). We derive novel analytic expressions for the growth rate of the Gregory-Laflamme instability for boosted black strings and its onset for arbitrary boost parameter. In the case of black rings, we study their stability properties in the region of parameter space that has so far remained inaccessible to numerical approaches. In particular, we show that very thin (ultraspinning) black rings exhibit a Gregory-Laflamme instability, giving strong evidence that black rings are unstable in the entire range of parameter space. For very thin rings, we show that the growth rate of the instability increases with increasing non-axisymmetric mode \(m\) while for thicker rings, there is competition between the different modes. However, up to second order in the blackfold approximation, we do not observe an elastic instability, in particular for large modes \(m \gg 1 \), where this approximation has higher accuracy. This suggests that the Gregory-Laflamme instability is the dominant instability for very thin black rings. Additionally, we find a long-lived mode that describes a wiggly time-dependent deformation of a black ring. We comment on disagreements between our results and corresponding ones obtained from a large \(D\) analysis of black ring instabilities.

MSC:

83C57 Black holes
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C75 Space-time singularities, cosmic censorship, etc.

References:

[1] R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett.70 (1993) 2837 [hep-th/9301052] [INSPIRE]. · Zbl 1051.83544
[2] O.J.C. Dias et al., Instability and new phases of higher-dimensional rotating black holes, Phys. Rev.D 80 (2009) 111701 [arXiv:0907.2248] [INSPIRE].
[3] O.J.C. Dias et al., An instability of higher-dimensional rotating black holes, JHEP05 (2010) 076 [arXiv:1001.4527] [INSPIRE]. · Zbl 1287.83031
[4] G.S. Hartnett and J.E. Santos, Non-axisymmetric instability of rotating black holes in higher dimensions, Phys. Rev.D 88 (2013) 041505 [arXiv:1306.4318] [INSPIRE].
[5] O.J.C. Dias, G.S. Hartnett and J.E. Santos, Quasinormal modes of asymptotically flat rotating black holes, Class. Quant. Grav.31 (2014) 245011 [arXiv:1402.7047] [INSPIRE]. · Zbl 1307.83029
[6] J.E. Santos and B. Way, Neutral black rings in five dimensions are unstable, Phys. Rev. Lett.114 (2015) 221101 [arXiv:1503.00721] [INSPIRE].
[7] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP03 (2010) 063 [arXiv:0910.1601] [INSPIRE]. · Zbl 1271.83050
[8] J.L. Hovdebo and R.C. Myers, Black rings, boosted strings and Gregory-Laflamme, Phys. Rev.D 73 (2006) 084013 [hep-th/0601079] [INSPIRE].
[9] M. Shibata and H. Yoshino, Nonaxisymmetric instability of rapidly rotating black hole in five dimensions, Phys. Rev.D 81 (2010) 021501 [arXiv:0912.3606] [INSPIRE].
[10] M. Shibata and H. Yoshino, Bar-mode instability of rapidly spinning black hole in higher dimensions: numerical simulation in general relativity, Phys. Rev.D 81 (2010) 104035 [arXiv:1004.4970] [INSPIRE].
[11] P. Figueras, M. Kunesch, L. Lehner and S. Tunyasuvunakool, End point of the ultraspinning instability and violation of cosmic censorship, Phys. Rev. Lett.118 (2017) 151103 [arXiv:1702.01755] [INSPIRE].
[12] P. Figueras, M. Kunesch and S. Tunyasuvunakool, End point of black ring instabilities and the weak cosmic censorship conjecture, Phys. Rev. Lett.116 (2016) 071102 [arXiv:1512.04532] [INSPIRE].
[13] L. Lehner and F. Pretorius, Black strings, low viscosity fluids and violation of cosmic censorship, Phys. Rev. Lett.105 (2010) 101102 [arXiv:1006.5960] [INSPIRE].
[14] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New horizons for black holes and branes, JHEP04 (2010) 046 [arXiv:0912.2352] [INSPIRE]. · Zbl 1272.83049
[15] J. Armas and M. Blau, Blackfolds, plane waves and minimal surfaces, JHEP07 (2015) 156 [arXiv:1503.08834] [INSPIRE]. · Zbl 1388.83372
[16] J. Armas and M. Blau, New geometries for black hole horizons, JHEP07 (2015) 048 [arXiv:1504.01393] [INSPIRE]. · Zbl 1388.83371
[17] J. Armas, Geometries for black hole horizons, in the proceedings of the 14thMarcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14), July 12-18, Rome, Italy (2015). · Zbl 1388.83371
[18] J. Armas, T. Harmark and N.A. Obers, Extremal black hole horizons, JHEP03 (2018) 099 [arXiv:1712.09364] [INSPIRE]. · Zbl 1388.83373
[19] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett.102 (2009) 191301 [arXiv:0902.0427] [INSPIRE]. · Zbl 1371.83097
[20] G. Arcioni and E. Lozano-Tellechea, Stability and critical phenomena of black holes and black rings, Phys. Rev.D 72 (2005) 104021 [hep-th/0412118] [INSPIRE].
[21] H. Elvang, R. Emparan and A. Virmani, Dynamics and stability of black rings, JHEP12 (2006) 074 [hep-th/0608076] [INSPIRE]. · Zbl 1226.83059
[22] P. Figueras, K. Murata and H.S. Reall, Black hole instabilities and local Penrose inequalities, Class. Quant. Grav.28 (2011) 225030 [arXiv:1107.5785] [INSPIRE]. · Zbl 1230.83058
[23] K. Tanabe, Black rings at large D, JHEP02 (2016) 151 [arXiv:1510.02200] [INSPIRE]. · Zbl 1388.83504
[24] K. Tanabe, Elastic instability of black rings at large D, arXiv:1605.08116 [INSPIRE]. · Zbl 1388.83504
[25] B. Chen, P.-C. Li and C.-Y. Zhang, Einstein-Gauss-Bonnet black rings at large D, JHEP07 (2018) 067 [arXiv:1805.03345] [INSPIRE]. · Zbl 1395.83087
[26] B. Cardona and P. Figueras, Critical Kaluza-Klein black holes and black strings in D = 10, JHEP11 (2018) 120 [arXiv:1806.11129] [INSPIRE]. · Zbl 1404.83103
[27] R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions, Phys. Rev. Lett.88 (2002) 101101 [hep-th/0110260] [INSPIRE].
[28] R. Emparan et al., The phase structure of higher-dimensional black rings and black holes, JHEP10 (2007) 110 [arXiv:0708.2181] [INSPIRE].
[29] O.J.C. Dias, J.E. Santos and B. Way, Rings, ripples and rotation: connecting black holes to black rings, JHEP07 (2014) 045 [arXiv:1402.6345] [INSPIRE].
[30] J. Armas and T. Harmark, Black holes and biophysical (mem)-branes, Phys. Rev.D 90 (2014) 124022 [arXiv:1402.6330] [INSPIRE].
[31] J. Camps, R. Emparan and N. Haddad, Black brane viscosity and the Gregory-Laflamme instability, JHEP05 (2010) 042 [arXiv:1003.3636] [INSPIRE]. · Zbl 1288.83024
[32] J. Camps and R. Emparan, Derivation of the blackfold effective theory, JHEP03 (2012) 038 [Erratum ibid.1206 (2012) 155] [arXiv:1201.3506] [INSPIRE]. · Zbl 1309.83062
[33] J. Armas, How fluids bend: the elastic expansion for higher-dimensional black holes, JHEP09 (2013) 073 [arXiv:1304.7773] [INSPIRE].
[34] J. Armas, J. Camps, T. Harmark and N.A. Obers, The Young modulus of black strings and the fine structure of blackfolds, JHEP02 (2012) 110 [arXiv:1110.4835] [INSPIRE]. · Zbl 1309.81193
[35] J. Armas and J. Tarrio, On actions for (entangling) surfaces and DCFTs, JHEP04 (2018) 100 [arXiv:1709.06766] [INSPIRE]. · Zbl 1390.81405
[36] M.M. Caldarelli, J. Camps, B. Goutéraux and K. Skenderis, AdS/Ricci-flat correspondence and the Gregory-Laflamme instability, Phys. Rev.D 87 (2013) 061502 [arXiv:1211.2815] [INSPIRE].
[37] M.M. Caldarelli, J. Camps, B. Goutéraux and K. Skenderis, AdS/Ricci-flat correspondence, JHEP04 (2014) 071 [arXiv:1312.7874] [INSPIRE].
[38] R. Emparan, R. Suzuki and K. Tanabe, The large D limit of general relativity, JHEP06 (2013) 009 [arXiv:1302.6382] [INSPIRE]. · Zbl 1342.83152
[39] V. Asnin et al., High and low dimensions in the black hole negative mode, Class. Quant. Grav.24 (2007) 5527 [arXiv:0706.1555] [INSPIRE]. · Zbl 1148.83319
[40] R. Emparan, R. Suzuki and K. Tanabe, Quasinormal modes of (Anti-)de Sitter black holes in the 1/D expansion, JHEP04 (2015) 085 [arXiv:1502.02820] [INSPIRE]. · Zbl 1390.83195
[41] J.E. Santos and B. Way, to appear.
[42] J. Armas and N.A. Obers, Blackfolds in (Anti)-de Sitter backgrounds, Phys. Rev.D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].
[43] J. Armas, N.A. Obers and M. Sanchioni, Gravitational tension, spacetime pressure and black hole volume, JHEP09 (2016) 124 [arXiv:1512.09106] [INSPIRE]. · Zbl 1390.83171
[44] B. Kol and M. Smolkin, Black hole stereotyping: induced gravito-static polarization, JHEP02 (2012) 010 [arXiv:1110.3764] [INSPIRE]. · Zbl 1309.83069
[45] R. Emparan, A. Fernandez-Pique and R. Luna, Geometric polarization of plasmas and Love numbers of AdS black branes, JHEP09 (2017) 150 [arXiv:1707.02777] [INSPIRE]. · Zbl 1382.81157
[46] J. Armas, J. Gath and N.A. Obers, Black branes as piezoelectrics, Phys. Rev. Lett.109 (2012) 241101 [arXiv:1209.2127] [INSPIRE].
[47] J. Armas, J. Gath and N.A. Obers, Electroelasticity of charged black branes, JHEP10 (2013) 035 [arXiv:1307.0504] [INSPIRE]. · Zbl 1342.83316
[48] J. Gath and A.V. Pedersen, Viscous asymptotically flat Reissner-Nordström black branes, JHEP03 (2014) 059 [arXiv:1302.5480] [INSPIRE].
[49] A. Di Dato, J. Gath and A.V. Pedersen, Probing the hydrodynamic limit of (super)gravity, JHEP04 (2015) 171 [arXiv:1501.05441] [INSPIRE]. · Zbl 1388.83791
[50] J. Armas et al., Forced fluid dynamics from blackfolds in general supergravity backgrounds, JHEP10 (2016) 154 [arXiv:1606.09644] [INSPIRE]. · Zbl 1390.83364
[51] J. Armas, J. Gath, A. Jain and A.V. Pedersen, Dissipative hydrodynamics with higher-form symmetry, JHEP05 (2018) 192 [arXiv:1803.00991] [INSPIRE].
[52] G. Grignani et al., Heating up the BIon, JHEP06 (2011) 058 [arXiv:1012.1494] [INSPIRE]. · Zbl 1298.81290
[53] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in supergravity and string theory, JHEP08 (2011) 154 [arXiv:1106.4428] [INSPIRE]. · Zbl 1298.81273
[54] G. Grignani et al., Thermal string probes in AdS and finite temperature Wilson loops, JHEP06 (2012) 144 [arXiv:1201.4862] [INSPIRE]. · Zbl 1397.83148
[55] J. Armas et al., Thermal giant gravitons, JHEP11 (2012) 123 [arXiv:1207.2789] [INSPIRE].
[56] V. Niarchos and K. Siampos, M2-M5 blackfold funnels, JHEP06 (2012) 175 [arXiv:1205.1535] [INSPIRE]. · Zbl 1397.83203
[57] J. Armas, N.A. Obers and A.V. Pedersen, Null-wave giant gravitons from thermal spinning brane probes, JHEP10 (2013) 109 [arXiv:1306.2633] [INSPIRE].
[58] V. Niarchos and K. Siampos, The black M2-M5 ring intersection spins, PoS(Corfu2012)088 [arXiv:1302.0854] [INSPIRE]. · Zbl 1397.83203
[59] J. Armas and M. Blau, Black probes of Schrödinger spacetimes, JHEP08 (2014) 140 [arXiv:1405.1301] [INSPIRE]. · Zbl 1333.83056
[60] D. Giataganas and K. Goldstein, Tension of confining strings at low temperature, JHEP02 (2015) 123 [arXiv:1411.4995] [INSPIRE]. · Zbl 1388.83658
[61] G. Grignani et al., Flowing BIon, Phys. Rev.D 96 (2017) 106023 [arXiv:1710.03562] [INSPIRE].
[62] J. Armas et al., Meta-stable non-extremal anti-branes, arXiv:1812.01067 [INSPIRE].
[63] J. Armas, (Non)-dissipative hydrodynamics on embedded surfaces, JHEP09 (2014) 047 [arXiv:1312.0597] [INSPIRE].
[64] J. Armas and T. Harmark, Constraints on the effective fluid theory of stationary branes, JHEP10 (2014) 063 [arXiv:1406.7813] [INSPIRE].
[65] S. Bhattacharyya, Constraints on the second order transport coefficients of an uncharged fluid, JHEP07 (2012) 104 [arXiv:1201.4654] [INSPIRE].
[66] N. Banerjee et al., Constraints on fluid dynamics from equilibrium partition functions, JHEP09 (2012) 046 [arXiv:1203.3544] [INSPIRE].
[67] J. Armas, J. Bhattacharya and N. Kundu, Surface transport in plasma-balls, JHEP06 (2016) 015 [arXiv:1512.08514] [INSPIRE]. · Zbl 1388.83339
[68] K. Jensen et al., Towards hydrodynamics without an entropy current, Phys. Rev. Lett.109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.