×

New geometries for black hole horizons. (English) Zbl 1388.83371

Summary: We construct several classes of worldvolume effective actions for black holes by integrating out spatial sections of the worldvolume geometry of asymptotically flat black branes. This provides a generalisation of the blackfold approach for higher-dimensional black holes and yields a map between different effective theories, which we exploit by obtaining new hydrodynamic and elastic transport coefficients via simple integrations. Using Euclidean minimal surfaces in order to decouple the fluid dynamics on different sections of the worldvolume, we obtain local effective theories for ultraspinning Myers-Perry branes and helicoidal black branes, described in terms of a stress-energy tensor, particle currents and non-trivial boost vectors. We then study in detail and present novel compact and non-compact geometries for black hole horizons in higher-dimensional asymptotically flat space-time. These include doubly-spinning black rings, black helicoids and helicoidal \(p\)-branes as well as helicoidal black rings and helicoidal black tori in \(D\geq6\).

MSC:

83C57 Black holes
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E15 Kaluza-Klein and other higher-dimensional theories
83E30 String and superstring theories in gravitational theory

References:

[1] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett.102 (2009) 191301 [arXiv:0902.0427] [INSPIRE]. · doi:10.1103/PhysRevLett.102.191301
[2] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP03 (2010) 063 [arXiv:0910.1601] [INSPIRE]. · Zbl 1271.83050 · doi:10.1007/JHEP03(2010)063
[3] R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP06 (2013) 009 [arXiv:1302.6382] [INSPIRE]. · Zbl 1342.83152 · doi:10.1007/JHEP06(2013)009
[4] B. Kleihaus, J. Kunz and E. Radu, Black rings in six dimensions, Phys. Lett.B 718 (2013) 1073 [arXiv:1205.5437] [INSPIRE]. · Zbl 1332.83058 · doi:10.1016/j.physletb.2012.11.015
[5] O.J. Dias, J.E. Santos and B. Way, Rings, Ripples and Rotation: Connecting Black Holes to Black Rings, JHEP07 (2014) 045 [arXiv:1402.6345] [INSPIRE]. · doi:10.1007/JHEP07(2014)045
[6] B. Kleihaus, J. Kunz and E. Radu, Black ringoids: spinning balanced black objects in d ≥ 5 dimensions - the codimension-two case, JHEP01 (2015) 117 [arXiv:1410.0581] [INSPIRE]. · doi:10.1007/JHEP01(2015)117
[7] P. Figueras and S. Tunyasuvunakool, Black rings in global anti-de Sitter space, JHEP03 (2015) 149 [arXiv:1412.5680] [INSPIRE]. · Zbl 1388.83439 · doi:10.1007/JHEP03(2015)149
[8] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New Horizons for Black Holes and Branes, JHEP04 (2010) 046 [arXiv:0912.2352] [INSPIRE]. · Zbl 1272.83049 · doi:10.1007/JHEP04(2010)046
[9] J. Armas and M. Blau, Blackfolds, Plane Waves and Minimal Surfaces, arXiv:1503.08834 [INSPIRE]. · Zbl 1388.83372
[10] M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black Rings in (Anti)-deSitter space, JHEP11 (2008) 011 [arXiv:0806.1954] [INSPIRE]. · doi:10.1088/1126-6708/2008/11/011
[11] J. Armas and N.A. Obers, Blackfolds in (Anti)-de Sitter Backgrounds, Phys. Rev.D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].
[12] M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional Rotating Charged Black Holes, JHEP04 (2011) 013 [arXiv:1012.4517] [INSPIRE]. · Zbl 1250.83052 · doi:10.1007/JHEP04(2011)013
[13] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in Supergravity and String Theory, JHEP08 (2011) 154 [arXiv:1106.4428] [INSPIRE]. · Zbl 1298.81273 · doi:10.1007/JHEP08(2011)154
[14] J.D. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev.D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
[15] J. Armas, How Fluids Bend: the Elastic Expansion for Higher-Dimensional Black Holes, JHEP09 (2013) 073 [arXiv:1304.7773] [INSPIRE]. · doi:10.1007/JHEP09(2013)073
[16] R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The Phase Structure of Higher-Dimensional Black Rings and Black Holes, JHEP10 (2007) 110 [arXiv:0708.2181] [INSPIRE]. · doi:10.1088/1126-6708/2007/10/110
[17] J. Camps, R. Emparan and N. Haddad, Black Brane Viscosity and the Gregory-Laflamme Instability, JHEP05 (2010) 042 [arXiv:1003.3636] [INSPIRE]. · Zbl 1288.83024 · doi:10.1007/JHEP05(2010)042
[18] J. Camps and R. Emparan, Derivation of the blackfold effective theory, JHEP03 (2012) 038 [arXiv:1201.3506] [INSPIRE]. · Zbl 1309.83062 · doi:10.1007/JHEP03(2012)038
[19] J. Armas and T. Harmark, Constraints on the effective fluid theory of stationary branes, JHEP1410 (2014) 63 [arXiv:1406.7813] [INSPIRE]. · doi:10.1007/JHEP10(2014)063
[20] J.J. Blanco-Pillado, R. Emparan and A. Iglesias, Fundamental Plasmid Strings and Black Rings, JHEP01 (2008) 014 [arXiv:0712.0611] [INSPIRE]. · doi:10.1088/1126-6708/2008/01/014
[21] R. Emparan and P. Figueras, Multi-black rings and the phase diagram of higher-dimensional black holes, JHEP11 (2010) 022 [arXiv:1008.3243] [INSPIRE]. · Zbl 1294.83047 · doi:10.1007/JHEP11(2010)022
[22] J. Armas, (Non)-Dissipative Hydrodynamics on Embedded Surfaces, JHEP09 (2014) 047 [arXiv:1312.0597] [INSPIRE]. · doi:10.1007/JHEP09(2014)047
[23] J. Armas, J. Camps, T. Harmark and N.A. Obers, The Young Modulus of Black Strings and the Fine Structure of Blackfolds, JHEP02 (2012) 110 [arXiv:1110.4835] [INSPIRE]. · Zbl 1309.81193 · doi:10.1007/JHEP02(2012)110
[24] J. Gath and A.V. Pedersen, Viscous asymptotically flat Reissner-Nordström black branes, JHEP03 (2014) 059 [arXiv:1302.5480] [INSPIRE]. · doi:10.1007/JHEP03(2014)059
[25] A. Dato, J. Gath and A.V. Pedersen, Probing the Hydrodynamic Limit of (Super)gravity, JHEP04 (2015) 171 [arXiv:1501.05441] [INSPIRE]. · Zbl 1388.83791 · doi:10.1007/JHEP04(2015)171
[26] H.S. Reall, Classical and thermodynamic stability of black branes, Phys. Rev.D 64 (2001) 044005 [hep-th/0104071] [INSPIRE].
[27] S.S. Gubser and I. Mitra, The Evolution of unstable black holes in anti-de Sitter space, JHEP08 (2001) 018 [hep-th/0011127] [INSPIRE]. · doi:10.1088/1126-6708/2001/08/018
[28] S.S. Gubser and I. Mitra, Instability of charged black holes in Anti-de Sitter space, hep-th/0009126 [INSPIRE]. · Zbl 1051.83516
[29] S. Hollands, A. Ishibashi and R.M. Wald, A Higher dimensional stationary rotating black hole must be axisymmetric, Commun. Math. Phys.271 (2007) 699 [gr-qc/0605106] [INSPIRE]. · Zbl 1128.83028 · doi:10.1007/s00220-007-0216-4
[30] J. Barbosa, M. Dajczer, and L. Jorge, Minimal ruled sub manifolds in spaces of constant curvature, Univ. Math. J.33 (1984) 531. · Zbl 0544.53044 · doi:10.1512/iumj.1984.33.33028
[31] E. Lee and H. Lee, Generalizations of the Choe-Hoppe helicoid and Clifford cones in Euclidean space, arXiv:1410.3418 [INSPIRE]. · Zbl 1373.53005
[32] J. Armas and T. Harmark, Black Holes and Biophysical (Mem)-branes, Phys. Rev.D 90 (2014) 124022 [arXiv:1402.6330] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.