×

M2-M5 blackfold funnels. (English) Zbl 1397.83203

Summary: We analyze the basic M2-M5 intersection in the supergravity regime using the blackfold approach. This approach allows us to recover the 1/4-BPS self-dual string soliton solution of Howe, Lambert and West as a three-funnel solution of an effective fivebrane worldvolume theory in a new regime, the regime of a large number of M2 and M5 branes. In addition, it allows us to discuss finite temperature effects for non-extremal self-dual string soliton solutions and wormhole solutions interpolating between stacks of M5 and anti-M5 branes. The purpose of this paper is to exhibit these solutions and their basic properties.

MSC:

83E50 Supergravity
83E30 String and superstring theories in gravitational theory
83C57 Black holes
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] Berman, DS, M-theory branes and their interactions, Phys. Rept., 456, 89, (2008) · doi:10.1016/j.physrep.2007.10.002
[2] Howe, PS; Lambert, N.; West, PC, The selfdual string soliton, Nucl. Phys., B 515, 203, (1998) · Zbl 0917.53029 · doi:10.1016/S0550-3213(97)00750-5
[3] Basu, A.; Harvey, JA, The M 2-M 5 brane system and a generalized nahm’s equation, Nucl. Phys., B 713, 136, (2005) · Zbl 1176.81095 · doi:10.1016/j.nuclphysb.2005.02.007
[4] J.P. Gauntlett, Intersecting branes, hep-th/9705011 [INSPIRE]. · Zbl 1052.81587
[5] Smith, DJ, Intersecting brane solutions in string and M-theory, Class. Quant. Grav., 20, r233, (2003) · Zbl 1031.83002 · doi:10.1088/0264-9381/20/9/203
[6] D. Youm, Localized intersecting BPS branes, hep-th/9902208 [INSPIRE].
[7] Lunin, O., Strings ending on branes from supergravity, JHEP, 09, 093, (2007) · doi:10.1088/1126-6708/2007/09/093
[8] Emparan, R.; Harmark, T.; Niarchos, V.; Obers, NA, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett., 102, 191301, (2009) · doi:10.1103/PhysRevLett.102.191301
[9] Emparan, R.; Harmark, T.; Niarchos, V.; Obers, NA, Essentials of blackfold dynamics, JHEP, 03, 063, (2010) · Zbl 1271.83050 · doi:10.1007/JHEP03(2010)063
[10] Emparan, R.; Harmark, T.; Niarchos, V.; Obers, NA, Blackfolds in supergravity and string theory, JHEP, 08, 154, (2011) · Zbl 1298.81273 · doi:10.1007/JHEP08(2011)154
[11] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear fluid dynamics from gravity, JHEP, 02, 045, (2008) · doi:10.1088/1126-6708/2008/02/045
[12] V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, arXiv:1107.5780 [INSPIRE]. · Zbl 1263.83009
[13] Izquierdo, J.; Lambert, N.; Papadopoulos, G.; Townsend, P., Dyonic membranes, Nucl. Phys., B 460, 560, (1996) · Zbl 1003.83513 · doi:10.1016/0550-3213(95)00606-0
[14] Costa, MS, Black composite M-branes, Nucl. Phys., B 495, 195, (1997) · Zbl 0935.83029 · doi:10.1016/S0550-3213(97)00185-5
[15] Russo, J.; Tseytlin, AA, Waves, boosted branes and BPS states in M-theory, Nucl. Phys., B 490, 121, (1997) · Zbl 0925.81247 · doi:10.1016/S0550-3213(97)00055-2
[16] Harmark, T.; Obers, N., Phase structure of noncommutative field theories and spinning brane bound states, JHEP, 03, 024, (2000) · Zbl 0959.81114 · doi:10.1088/1126-6708/2000/03/024
[17] Harmark, T., Open branes in space-time noncommutative little string theory, Nucl. Phys., B 593, 76, (2001) · Zbl 0971.81538 · doi:10.1016/S0550-3213(00)00621-0
[18] Callan, CG; Maldacena, JM, Brane death and dynamics from the Born-Infeld action, Nucl. Phys., B 513, 198, (1998) · Zbl 0958.81105 · doi:10.1016/S0550-3213(97)00700-1
[19] Grignani, G.; Harmark, T.; Marini, A.; Obers, NA; Orselli, M., Heating up the bion, JHEP, 06, 058, (2011) · Zbl 1298.81290 · doi:10.1007/JHEP06(2011)058
[20] Grignani, G.; Harmark, T.; Marini, A.; Obers, NA; Orselli, M., Thermodynamics of the hot bion, Nucl. Phys., B 851, 462, (2011) · doi:10.1016/j.nuclphysb.2011.06.002
[21] V. Niarchos and K. Siampos, to appear.
[22] Camps, J.; Emparan, R., Derivation of the blackfold effective theory, JHEP, 03, 038, (2012) · Zbl 1309.83062 · doi:10.1007/JHEP03(2012)038
[23] Camps, J.; Emparan, R.; Haddad, N., Black brane viscosity and the Gregory-Laflamme instability, JHEP, 05, 042, (2010) · Zbl 1288.83024 · doi:10.1007/JHEP05(2010)042
[24] Armas, J.; Camps, J.; Harmark, T.; Obers, NA, The Young modulus of black strings and the fine structure of blackfolds, JHEP, 02, 110, (2012) · Zbl 1309.81193 · doi:10.1007/JHEP02(2012)110
[25] Caldarelli, MM; Emparan, R.; Pol, B., Higher-dimensional rotating charged black holes, JHEP, 04, 013, (2011) · Zbl 1250.83052 · doi:10.1007/JHEP04(2011)013
[26] Emparan, R.; Mateos, D.; Townsend, PK, Supergravity supertubes, JHEP, 07, 011, (2001) · doi:10.1088/1126-6708/2001/07/011
[27] Howe, PS; Sezgin, E.; West, PC, Covariant field equations of the M-theory five-brane, Phys. Lett., B 399, 49, (1997)
[28] Bandos, IA; etal., Covariant action for the superfive-brane of M-theory, Phys. Rev. Lett., 78, 4332, (1997) · Zbl 0944.81039 · doi:10.1103/PhysRevLett.78.4332
[29] Aganagic, M.; Park, J.; Popescu, C.; Schwarz, JH, World volume action of the M-theory five-brane, Nucl. Phys., B 496, 191, (1997) · Zbl 0935.83032 · doi:10.1016/S0550-3213(97)00227-7
[30] Fayyazuddin, A.; Husain, TZ; Jatkar, DP, One dimensional M 5-brane intersections, Phys. Rev., D 71, 106003, (2005)
[31] Chen, B.; He, W.; Wu, J-B; Zhang, L., M 5-branes and Wilson surfaces, JHEP, 08, 067, (2007) · Zbl 1326.81146 · doi:10.1088/1126-6708/2007/08/067
[32] Chen, B., The self-dual string soliton in ads_{4} × S\^{}{7} spacetime, Eur. Phys. J., C 54, 489, (2008) · Zbl 1189.83086 · doi:10.1140/epjc/s10052-008-0534-5
[33] Caldarelli, MM; Emparan, R.; Rodriguez, MJ, Black rings in (anti)-de Sitter space, JHEP, 11, 011, (2008) · doi:10.1088/1126-6708/2008/11/011
[34] Armas, J.; Obers, NA, Blackfolds in (anti)-de Sitter backgrounds, Phys. Rev., D 83, 084039, (2011)
[35] G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Thermal string probes in AdS and finite temperature Wilson loops, arXiv:1201.4862 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.