×

Extremal black hole horizons. (English) Zbl 1388.83373

Summary: Using the blackfold effective theory applied to extremal Kerr branes we provide evidence for the existence of new stationary extremal black hole solutions in asymptotically flat spacetime with both single and multiple disconnected horizons. These include extremal doubly-spinning black rings, black saturns, di-rings and bi-rings in five spacetime dimensions as well as extremal Myers-Perry black holes and black saturns in dimensions greater than five. Some of these constructions constitute the first examples of black hole solutions with extremal disconnected horizons in vacuum Einstein gravity.

MSC:

83C57 Black holes
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C15 Exact solutions to problems in general relativity and gravitational theory

References:

[1] R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys.172 (1986) 304 [INSPIRE]. · Zbl 0601.53081 · doi:10.1016/0003-4916(86)90186-7
[2] R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions, Phys. Rev. Lett.88 (2002) 101101 [hep-th/0110260] [INSPIRE]. · doi:10.1103/PhysRevLett.88.101101
[3] R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP09 (2003) 025 [hep-th/0308056] [INSPIRE]. · doi:10.1088/1126-6708/2003/09/025
[4] A.A. Pomeransky and R.A. Sen’kov, Black ring with two angular momenta, hep-th/0612005 [INSPIRE]. · Zbl 1390.83364
[5] R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The Phase Structure of Higher-Dimensional Black Rings and Black Holes, JHEP10 (2007) 110 [arXiv:0708.2181] [INSPIRE]. · doi:10.1088/1126-6708/2007/10/110
[6] H. Elvang and P. Figueras, Black Saturn, JHEP05 (2007) 050 [hep-th/0701035] [INSPIRE]. · doi:10.1088/1126-6708/2007/05/050
[7] J. Evslin and C. Krishnan, The Black Di-Ring: An Inverse Scattering Construction, Class. Quant. Grav.26 (2009) 125018 [arXiv:0706.1231] [INSPIRE]. · Zbl 1170.83411 · doi:10.1088/0264-9381/26/12/125018
[8] H. Iguchi and T. Mishima, Black di-ring and infinite nonuniqueness, Phys. Rev.D 75 (2007) 064018 [Erratum ibid.D 78 (2008) 069903] [hep-th/0701043] [INSPIRE].
[9] H. Elvang and M.J. Rodriguez, Bicycling Black Rings, JHEP04 (2008) 045 [arXiv:0712.2425] [INSPIRE]. · Zbl 1246.83112 · doi:10.1088/1126-6708/2008/04/045
[10] K. Izumi, Orthogonal black di-ring solution, Prog. Theor. Phys.119 (2008) 757 [arXiv:0712.0902] [INSPIRE]. · Zbl 1192.83033 · doi:10.1143/PTP.119.757
[11] P. Figueras, H.K. Kunduri, J. Lucietti and M. Rangamani, Extremal vacuum black holes in higher dimensions, Phys. Rev.D 78 (2008) 044042 [arXiv:0803.2998] [INSPIRE].
[12] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett.102 (2009) 191301 [arXiv:0902.0427] [INSPIRE]. · Zbl 1371.83097 · doi:10.1103/PhysRevLett.102.191301
[13] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP03 (2010) 063 [arXiv:0910.1601] [INSPIRE]. · Zbl 1271.83050 · doi:10.1007/JHEP03(2010)063
[14] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New Horizons for Black Holes and Branes, JHEP04 (2010) 046 [arXiv:0912.2352] [INSPIRE]. · Zbl 1272.83049 · doi:10.1007/JHEP04(2010)046
[15] B. Kleihaus, J. Kunz and E. Radu, Black rings in six dimensions, Phys. Lett.B 718 (2013) 1073 [arXiv:1205.5437] [INSPIRE]. · Zbl 1332.83058 · doi:10.1016/j.physletb.2012.11.015
[16] Ó.J.C. Dias, J.E. Santos and B. Way, Rings, Ripples and Rotation: Connecting Black Holes to Black Rings, JHEP07 (2014) 045 [arXiv:1402.6345] [INSPIRE]. · doi:10.1007/JHEP07(2014)045
[17] B. Kleihaus, J. Kunz and E. Radu, Black ringoids: spinning balanced black objects in d ≥ 5 dimensions — the codimension-two case, JHEP01 (2015) 117 [arXiv:1410.0581] [INSPIRE]. · doi:10.1007/JHEP01(2015)117
[18] R. Emparan, P. Figueras and M. Martinez, Bumpy black holes, JHEP12 (2014) 072 [arXiv:1410.4764] [INSPIRE]. · Zbl 1333.83074 · doi:10.1007/JHEP12(2014)072
[19] P. Figueras, M. Kunesch and S. Tunyasuvunakool, End Point of Black Ring Instabilities and the Weak Cosmic Censorship Conjecture, Phys. Rev. Lett.116 (2016) 071102 [arXiv:1512.04532] [INSPIRE]. · doi:10.1103/PhysRevLett.116.071102
[20] J. Armas and M. Blau, Blackfolds, Plane Waves and Minimal Surfaces, JHEP07 (2015) 156 [arXiv:1503.08834] [INSPIRE]. · Zbl 1388.83372 · doi:10.1007/JHEP07(2015)156
[21] J. Armas and M. Blau, New Geometries for Black Hole Horizons, JHEP07 (2015) 048 [arXiv:1504.01393] [INSPIRE]. · Zbl 1388.83371 · doi:10.1007/JHEP07(2015)048
[22] P. Figueras, M. Kunesch, L. Lehner and S. Tunyasuvunakool, End Point of the Ultraspinning Instability and Violation of Cosmic Censorship, Phys. Rev. Lett.118 (2017) 151103 [arXiv:1702.01755] [INSPIRE]. · doi:10.1103/PhysRevLett.118.151103
[23] T. Harmark, V. Niarchos and N.A. Obers, Instabilities of black strings and branes, Class. Quant. Grav.24 (2007) R1 [hep-th/0701022] [INSPIRE]. · Zbl 1113.83003 · doi:10.1088/0264-9381/24/8/R01
[24] G.T. Horowitz ed., Black holes in higher dimensions, Cambridge University Press, Cambridge, U.K. (2012). · Zbl 1241.83007
[25] T. Harmark, Stationary and axisymmetric solutions of higher-dimensional general relativity, Phys. Rev.D 70 (2004) 124002 [hep-th/0408141] [INSPIRE].
[26] T. Harmark and P. Olesen, On the structure of stationary and axisymmetric metrics, Phys. Rev.D 72 (2005) 124017 [hep-th/0508208] [INSPIRE].
[27] S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2011). · Zbl 0265.53054
[28] G.J. Galloway and R. Schoen, A Generalization of Hawking’s black hole topology theorem to higher dimensions, Commun. Math. Phys.266 (2006) 571 [gr-qc/0509107] [INSPIRE]. · Zbl 1190.53070
[29] G.J. Galloway, Constraints on the topology of higher dimensional black holes, arXiv:1111.5356 [INSPIRE]. · Zbl 1309.83003
[30] M. Eckstein, Degenerating Black Saturns, JHEP11 (2013) 078 [arXiv:1309.4414] [INSPIRE]. · doi:10.1007/JHEP11(2013)078
[31] J. Armas, J. Camps, T. Harmark and N.A. Obers, The Young Modulus of Black Strings and the Fine Structure of Blackfolds, JHEP02 (2012) 110 [arXiv:1110.4835] [INSPIRE]. · Zbl 1309.81193 · doi:10.1007/JHEP02(2012)110
[32] J. Armas, How Fluids Bend: the Elastic Expansion for Higher-Dimensional Black Holes, JHEP09 (2013) 073 [arXiv:1304.7773] [INSPIRE]. · doi:10.1007/JHEP09(2013)073
[33] J. Armas and T. Harmark, Constraints on the effective fluid theory of stationary branes, JHEP10 (2014) 063 [arXiv:1406.7813] [INSPIRE]. · doi:10.1007/JHEP10(2014)063
[34] J. Armas, T. Harmark and N.A. Obers, Black holes with disconnected horizons, to appear. · Zbl 1388.83373
[35] J. Armas and J. Tarrio, On actions for (entangling) surfaces and DCFTs, arXiv:1709.06766 [INSPIRE]. · Zbl 1390.81405
[36] J. Armas, N.A. Obers and M. Sanchioni, Gravitational Tension, Spacetime Pressure and Black Hole Volume, JHEP09 (2016) 124 [arXiv:1512.09106] [INSPIRE]. · Zbl 1390.83171 · doi:10.1007/JHEP09(2016)124
[37] H. Elvang, R. Emparan and P. Figueras, Phases of five-dimensional black holes, JHEP05 (2007) 056 [hep-th/0702111] [INSPIRE]. · doi:10.1088/1126-6708/2007/05/056
[38] M. Durkee, Geodesics and Symmetries of Doubly-Spinning Black Rings, Class. Quant. Grav.26 (2009) 085016 [arXiv:0812.0235] [INSPIRE]. · Zbl 1163.83322 · doi:10.1088/0264-9381/26/8/085016
[39] R. Emparan and H.S. Reall, Black Rings, Class. Quant. Grav.23 (2006) R169 [hep-th/0608012] [INSPIRE]. · Zbl 1108.83001 · doi:10.1088/0264-9381/23/20/R01
[40] R. Emparan and P. Figueras, Multi-black rings and the phase diagram of higher-dimensional black holes, JHEP11 (2010) 022 [arXiv:1008.3243] [INSPIRE]. · Zbl 1294.83047 · doi:10.1007/JHEP11(2010)022
[41] G.W. Gibbons, M.J. Perry and C.N. Pope, The First law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav.22 (2005) 1503 [hep-th/0408217] [INSPIRE]. · Zbl 1068.83010 · doi:10.1088/0264-9381/22/9/002
[42] M. Khuri and E. Woolgar, Nonexistence of Degenerate Horizons in Static Vacua and Black Hole Uniqueness, Phys. Lett.B 777 (2018) 235 [arXiv:1710.09669] [INSPIRE]. · Zbl 1411.83049 · doi:10.1016/j.physletb.2017.12.044
[43] H.K. Kunduri and J. Lucietti, A Classification of near-horizon geometries of extremal vacuum black holes, J. Math. Phys.50 (2009) 082502 [arXiv:0806.2051] [INSPIRE]. · Zbl 1223.83032 · doi:10.1063/1.3190480
[44] H.K. Kunduri and J. Lucietti, Classification of near-horizon geometries of extremal black holes, Living Rev. Rel.16 (2013) 8 [arXiv:1306.2517] [INSPIRE]. · Zbl 1320.83005 · doi:10.12942/lrr-2013-8
[45] S. Hollands and S. Yazadjiev, Uniqueness theorem for 5-dimensional black holes with two axial Killing fields, Commun. Math. Phys.283 (2008) 749 [arXiv:0707.2775] [INSPIRE]. · Zbl 1153.83024 · doi:10.1007/s00220-008-0516-3
[46] P. Figueras and J. Lucietti, On the uniqueness of extremal vacuum black holes, Class. Quant. Grav.27 (2010) 095001 [arXiv:0906.5565] [INSPIRE]. · Zbl 1190.83031 · doi:10.1088/0264-9381/27/9/095001
[47] J. Armas and N.A. Obers, Blackfolds in (Anti)-de Sitter Backgrounds, Phys. Rev.D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].
[48] M. Khuri and E. Woolgar, Nonexistence of Extremal de Sitter Black Rings, Class. Quant. Grav.34 (2017) 22LT01 [arXiv:1708.03627] [INSPIRE]. · Zbl 1380.83053
[49] J. Camps and R. Emparan, Derivation of the blackfold effective theory, JHEP03 (2012) 038 [Erratum ibid.06 (2012) 155] [arXiv:1201.3506] [INSPIRE]. · Zbl 1309.83062
[50] J. Armas, (Non)-Dissipative Hydrodynamics on Embedded Surfaces, JHEP09 (2014) 047 [arXiv:1312.0597] [INSPIRE]. · Zbl 1170.83411
[51] J. Armas and T. Harmark, Black Holes and Biophysical (Mem)-branes, Phys. Rev.D 90 (2014) 124022 [arXiv:1402.6330] [INSPIRE].
[52] J. Armas, J. Gath and N.A. Obers, Black Branes as Piezoelectrics, Phys. Rev. Lett.109 (2012) 241101 [arXiv:1209.2127] [INSPIRE]. · doi:10.1103/PhysRevLett.109.241101
[53] J. Armas, J. Gath and N.A. Obers, Electroelasticity of Charged Black Branes, JHEP10 (2013) 035 [arXiv:1307.0504] [INSPIRE]. · Zbl 1342.83316 · doi:10.1007/JHEP10(2013)035
[54] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in Supergravity and String Theory, JHEP08 (2011) 154 [arXiv:1106.4428] [INSPIRE]. · Zbl 1298.81273 · doi:10.1007/JHEP08(2011)154
[55] M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional Rotating Charged Black Holes, JHEP04 (2011) 013 [arXiv:1012.4517] [INSPIRE]. · Zbl 1250.83052 · doi:10.1007/JHEP04(2011)013
[56] G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Heating up the BIon, JHEP06 (2011) 058 [arXiv:1012.1494] [INSPIRE]. · Zbl 1298.81290 · doi:10.1007/JHEP06(2011)058
[57] J. Armas, J. Gath, V. Niarchos, N.A. Obers and A.V. Pedersen, Forced Fluid Dynamics from Blackfolds in General Supergravity Backgrounds, JHEP10 (2016) 154 [arXiv:1606.09644] [INSPIRE]. · Zbl 1390.83364 · doi:10.1007/JHEP10(2016)154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.