×

Microlocal lifts and quantum unique ergodicity on \(\mathrm{GL}_2(\mathbb Q_p)\). (English) Zbl 1406.58019

Summary: We prove that arithmetic quantum unique ergodicity holds on compact arithmetic quotients of \(\mathrm{GL}_2(\mathbb Q_p)\) for automorphic forms belonging to the principal series. We interpret this conclusion in terms of the equidistribution of eigenfunctions on covers of a fixed regular graph or along nested sequences of regular graphs.
Our results are the first of their kind on any \(p\)-adic arithmetic quotient. They may be understood as analogues of Lindenstrauss’s theorem on the equidistribution of Maass forms on a compact arithmetic surface. The new ingredients here include the introduction of a representation-theoretic notion of “\(p\)-adic microlocal lifts” with favorable properties, such as diagonal invariance of limit measures; the proof of positive entropy of limit measures in a \(p\)-adic aspect, following the method of Bourgain-Lindenstrauss; and some analysis of local Rankin-Selberg integrals involving the microlocal lifts introduced here as well as classical newvectors. An important input is a measure-classification result of Einsiedler-Lindenstrauss.

MSC:

58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity
22E50 Representations of Lie and linear algebraic groups over local fields
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)

References:

[1] 10.1215/00127094-2881592 · Zbl 1386.58015 · doi:10.1215/00127094-2881592
[2] 10.1007/BF01359701 · Zbl 0177.34901 · doi:10.1007/BF01359701
[3] 10.1007/s00220-002-0770-8 · Zbl 1018.58019 · doi:10.1007/s00220-002-0770-8
[4] ; Brandt, Jber. Deutsch. Math. Verein., 53, 23 (1943) · Zbl 0028.10802
[5] 10.1016/j.crma.2010.07.003 · Zbl 1214.37006 · doi:10.1016/j.crma.2010.07.003
[6] 10.1007/s11856-012-0096-y · Zbl 1317.05110 · doi:10.1007/s11856-012-0096-y
[7] 10.1007/s00222-014-0502-7 · Zbl 1343.58016 · doi:10.1007/s00222-014-0502-7
[8] 10.1017/CBO9780511609572 · doi:10.1017/CBO9780511609572
[9] 10.1007/BF01428197 · Zbl 0239.10015 · doi:10.1007/BF01428197
[10] 10.1007/BF01355984 · Zbl 0253.20062 · doi:10.1007/BF01355984
[11] 10.1515/crll.1955.195.127 · Zbl 0068.03303 · doi:10.1515/crll.1955.195.127
[12] 10.3934/jmd.2008.2.83 · doi:10.3934/jmd.2008.2.83
[13] ; Gross, Number theory. CMS Conf. Proc., 7, 115 (1987)
[14] ; Holowinsky, Ann. of Math. (2), 172, 1517 (2010) · Zbl 1211.11050
[15] 10.1093/imrn/rnw322 · Zbl 1444.11099 · doi:10.1093/imrn/rnw322
[16] 10.1215/00127094-2008-052 · Zbl 1222.11065 · doi:10.1215/00127094-2008-052
[17] 10.1007/s00039-009-0040-4 · Zbl 1216.11057 · doi:10.1007/s00039-009-0040-4
[18] 10.1515/9781400883974 · doi:10.1515/9781400883974
[19] ; Kneser, Algebraic Groups and Discontinuous Subgroups. Proc. Sympos. Pure Math., 9, 187 (1966)
[20] 10.1007/s00023-013-0284-2 · Zbl 1328.35344 · doi:10.1007/s00023-013-0284-2
[21] 10.1215/00127094-2017-0027 · Zbl 1384.37035 · doi:10.1215/00127094-2017-0027
[22] 10.1155/S1073792801000459 · Zbl 1093.11034 · doi:10.1155/S1073792801000459
[23] ; Lindenstrauss, Current developments in mathematics, 2004, 111 (2006) · Zbl 1186.58022
[24] 10.4007/annals.2006.163.165 · Zbl 1104.22015 · doi:10.4007/annals.2006.163.165
[25] 10.1007/BF02126799 · Zbl 0661.05035 · doi:10.1007/BF02126799
[26] 10.1002/cpa.10078 · Zbl 1044.11022 · doi:10.1002/cpa.10078
[27] 10.1007/s10240-010-0025-8 · Zbl 1376.11040 · doi:10.1007/s10240-010-0025-8
[28] 10.1215/00127094-144287 · Zbl 1273.11069 · doi:10.1215/00127094-144287
[29] 10.1007/s11139-011-9319-9 · Zbl 1282.11046 · doi:10.1007/s11139-011-9319-9
[30] 10.1090/S0025-5718-2015-02943-3 · Zbl 1323.11021 · doi:10.1090/S0025-5718-2015-02943-3
[31] 10.1007/s00013-017-1039-y · Zbl 1430.11052 · doi:10.1007/s00013-017-1039-y
[32] 10.1090/S0894-0347-2013-00779-1 · Zbl 1322.11051 · doi:10.1090/S0894-0347-2013-00779-1
[33] ; Piatetski-Shapiro, Compositio Math., 64, 31 (1987) · Zbl 0637.10023
[34] 10.1016/0021-8693(80)90151-9 · Zbl 0433.10012 · doi:10.1016/0021-8693(80)90151-9
[35] ; Prasad, Compositio Math., 75, 1 (1990) · Zbl 0731.22013
[36] 10.1007/s002200100498 · Zbl 0992.58014 · doi:10.1007/s002200100498
[37] 10.1007/BF02099418 · Zbl 0836.58043 · doi:10.1007/BF02099418
[38] 10.1090/S0273-0979-2011-01323-4 · Zbl 1234.58007 · doi:10.1090/S0273-0979-2011-01323-4
[39] ; Schmidt, J. Ramanujan Math. Soc., 17, 115 (2002) · Zbl 0997.11040
[40] 10.1007/s00039-007-0611-1 · Zbl 1132.81024 · doi:10.1007/s00039-007-0611-1
[41] ; Soundararajan, Ann. of Math. (2), 172, 1469 (2010) · Zbl 1234.11066
[42] 10.4310/CJM.2014.v2.n1.a3 · Zbl 1307.11062 · doi:10.4310/CJM.2014.v2.n1.a3
[43] 10.4007/annals.2010.172.989 · Zbl 1214.11051 · doi:10.4007/annals.2010.172.989
[44] ; Vignéras, Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics, 800 (1980) · Zbl 0422.12008
[45] 10.1007/PL00005549 · Zbl 1007.11028 · doi:10.1007/PL00005549
[46] 10.1215/S0012-7094-87-05546-3 · Zbl 0643.58029 · doi:10.1215/S0012-7094-87-05546-3
[47] 10.1016/0022-1236(92)90009-8 · Zbl 0771.58046 · doi:10.1016/0022-1236(92)90009-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.