×

Mass equidistribution of Hilbert modular eigenforms. (English) Zbl 1282.11046

Summary: Let \(\mathbb{F}\) be a totally real number field, and let \(f\) traverse a sequence of non-dihedral holomorphic eigen cusp forms on \(\mathrm{GL}_{2}/\mathbb{F}\) of weight \(\left(k_{1},\dots,k_{[\mathbb{F}:\mathbb{Q}]}\right)\), trivial central character and full level. We show that the mass of \(f\) equidistributes on the Hilbert modular variety as \(\max\left(k_{1},\dots,k_{[\mathbb{F}:\mathbb{Q}]}\right) \rightarrow \infty\).
Our result answers affirmatively a natural analog of a conjecture of Z. Rudnick and P. Sarnak [Commun. Math. Phys. 161, No. 1, 195–213 (1994; Zbl 0836.58043)]. Our proof generalizes the argument of R. Holowinsky and K. Soundararajan [Ann. Math. (2) 172, No. 2, 1517–1528 (2010; Zbl 1211.11050)] who established the case \(\mathbb{F} = \mathbb{Q}\). The essential difficulty in doing so is to adapt Holowinsky’s bounds for the Weyl periods of the equidistribution problem in terms of manageable shifted convolution sums of Fourier coefficients to the case of a number field with nontrivial unit group.

MSC:

11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
11M36 Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas)
58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity

References:

[1] Blasius, D.: Hilbert modular forms and the Ramanujan conjecture. In: Noncommutative Geometry and Number Theory. Aspects Math., vol. E37, pp. 35–56. Vieweg, Wiesbaden (2006) · Zbl 1183.11023
[2] Blomer, V., Harcos, G.: Twisted L-functions over number fields and Hilbert’s eleventh problem. Geom. Funct. Anal. 20(1), 1–52 (2010) · Zbl 1221.11121 · doi:10.1007/s00039-010-0063-x
[3] Colin de Verdière, Y.: Ergodicité et fonctions propres du laplacien. In: Bony–Sjöstrand–Meyer Seminar, 1984–1985, p. 8. École Polytech., Palaiseau (1985). Exp. No. 13 · Zbl 0576.58032
[4] Davenport, H.: Multiplicative Number Theory, 2nd edn. Graduate Texts in Mathematics, vol. 74. Springer, New York (1980). Revised by Hugh L. Montgomery · Zbl 0453.10002
[5] Gelbart, S., Jacquet, H.: A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. École Norm. Sup. (4) 11(4), 471–542 (1978) · Zbl 0406.10022
[6] Gelbart, S., Jacquet, H.: Forms of GL(2) from the analytic point of view. In: Automorphic Forms, Representations and L-Functions, Part 1, Oregon State Univ., Corvallis, Ore., 1977. Proc. Sympos. Pure Math., vol. XXXIII, pp. 213–251. Amer. Math. Soc., Providence (1979)
[7] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic Press, Amsterdam (2007). Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX) · Zbl 1208.65001
[8] Greaves, G.: Sieves in Number Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 43. Springer, Berlin (2001) · Zbl 1003.11044
[9] Harris, M., Kudla, S.S.: The central critical value of a triple product L-function. Ann. Math. 133(3), 605–672 (1991) · Zbl 0731.11031 · doi:10.2307/2944321
[10] Hildebrand, A., Tenenbaum, G.: Integers without large prime factors. J. Théor. Nr. Bordx. 5(2), 411–484 (1993) · Zbl 0797.11070 · doi:10.5802/jtnb.101
[11] Hinz, J.G.: Methoden des grossen Siebes in algebraischen Zahlkörpern. Manuscr. Math. 57(2), 181–194 (1987) · Zbl 0594.10038
[12] Hoffstein, J., Lockhart, P.: Coefficients of Maass forms and the Siegel zero. Ann. Math. 140(1), 161–181 (1994). With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman · Zbl 0814.11032 · doi:10.2307/2118543
[13] Holowinsky, R.: A sieve method for shifted convolution sums. Duke Math. J. 146(3), 401–448 (2009) · Zbl 1218.11089 · doi:10.1215/00127094-2009-002
[14] Holowinsky, R.: Sieving for mass equidistribution. Ann. Math. 172(2), 1499–1516 (2010) · Zbl 1214.11054
[15] Holowinsky, R., Soundararajan, K.: Mass equidistribution for Hecke eigenforms. Ann. Math. 172(2), 1517–1528 (2010) · Zbl 1211.11050
[16] Ichino, A.: Trilinear forms and the central values of triple product L-functions. Duke Math. J. 145(2), 281–307 (2008) · Zbl 1222.11065 · doi:10.1215/00127094-2008-052
[17] Iwaniec, H.: Spectral Methods of Automorphic Forms, 2nd edn. Graduate Studies in Mathematics, vol. 53. American Mathematical Society, Providence (2002) · Zbl 1006.11024
[18] Iwaniec, H.: Notes on the quantum unique ergodicity for holomorphic cusp forms (2010)
[19] Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004) · Zbl 1059.11001
[20] Iwaniec, H., Sarnak, P.: Perspectives on the analytic theory of L-functions. Geom. Funct. Anal. (Special Volume, Part II), 705–741 (2000). GAFA 2000 (Tel Aviv, 1999) · Zbl 0996.11036
[21] Jacquet, H., Langlands, R.P.: Automorphic Forms on GL(2). Lecture Notes in Mathematics, vol. 114. Springer, Berlin (1970) · Zbl 0236.12010
[22] Jacquet, H.: Automorphic Forms on GL(2). Part II. Lecture Notes in Mathematics, vol. 278. Springer, Berlin (1972) · Zbl 0243.12005
[23] Kowalski, E.: The Large Sieve and Its Applications. Cambridge Tracts in Mathematics, vol. 175. Cambridge University Press, Cambridge (2008). Arithmetic geometry, random walks and discrete groups · Zbl 1177.11080
[24] Krause, Uwe: Abschätzungen für die Funktion {\(\Psi\)} K (x,y) in algebraischen Zahlkörpern. Manuscr. Math. 69(3), 319–331 (1990) · Zbl 0759.11028 · doi:10.1007/BF02567930
[25] Labesse, J.-P., Langlands, R.P.: L-indistinguishability for SL(2). Can. J. Math. 31(4), 726–785 (1979) · Zbl 0421.12014 · doi:10.4153/CJM-1979-070-3
[26] Lindenstrauss, E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. 163(1), 165–219 (2006) · Zbl 1104.22015 · doi:10.4007/annals.2006.163.165
[27] Luo, W., Sarnak, P.: Quantum ergodicity of eigenfunctions on $\(\backslash\)mathrm {PSL}_{2}(\(\backslash\)bold Z)\(\backslash\)backslash H\^{2}$ . Publ. Math. IHÉS 81, 207–237 (1995) · Zbl 0852.11024 · doi:10.1007/BF02699377
[28] Luo, W., Sarnak, P.: Mass equidistribution for Hecke eigenforms. Commun. Pure Appl. Math. 56(7), 874–891 (2003). Dedicated to the memory of Jürgen K. Moser · Zbl 1044.11022 · doi:10.1002/cpa.10078
[29] Marshall, S.: Mass equidistribution for automorphic forms of cohomological type on GL_2. ArXiv e-prints (June 2010)
[30] Montgomery, H.L.: A note on the large sieve. J. Lond. Math. Soc. 43, 93–98 (1968) · Zbl 0254.10043 · doi:10.1112/jlms/s1-43.1.93
[31] Nair, M.: Multiplicative functions of polynomial values in short intervals. Acta Arith. 62(3), 257–269 (1992) · Zbl 0768.11038
[32] Nair, M., Tenenbaum, G.: Short sums of certain arithmetic functions. Acta Math. 180(1), 119–144 (1998) · Zbl 0917.11048 · doi:10.1007/BF02392880
[33] Nelson, P.: Equidistribution of cusp forms in the level aspect. arXiv:1011.1292 [math.NT] (2010)
[34] Rudnick, Z., Sarnak, P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161(1), 195–213 (1994) · Zbl 0836.58043 · doi:10.1007/BF02099418
[35] Sarnak, P.: Arithmetic quantum chaos. In: The Schur Lectures (1992) (Tel Aviv). Israel Math. Conf. Proc., vol. 8, pp. 183–236. Bar-Ilan Univ., Ramat Gan (1995) · Zbl 0831.58045
[36] Sarnak, P.: Recent progress on QUE. http://www.math.princeton.edu/sarnak/SarnakQUE.pdf (2009)
[37] Schaal, W.: On the large sieve method in algebraic number fields. J. Number Theory 2, 249–270 (1970) · Zbl 0198.07101 · doi:10.1016/0022-314X(70)90052-1
[38] Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. (3) 31(1), 79–98 (1975) · Zbl 0311.10029 · doi:10.1112/plms/s3-31.1.79
[39] Shimura, G.: The special values of the zeta functions associated with Hilbert modular forms. Duke Math. J. 45(3), 637–679 (1978) · Zbl 0394.10015 · doi:10.1215/S0012-7094-78-04529-5
[40] Silberman, L., Venkatesh, A.: On quantum unique ergodicity for locally symmetric spaces. Geom. Funct. Anal. 17(3), 960–998 (2007) · Zbl 1132.81024 · doi:10.1007/s00039-007-0611-1
[41] Šnirel’man, A.I.: Ergodic properties of eigenfunctions. Usp. Mat. Nauk 29(6(180)), 181–182 (1974) · Zbl 0324.58020
[42] Soundararajan, K.: Arizona winter school lecture notes on quantum unique ergodicity and number theory. http://math.arizona.edu/\(\sim\)swc/aws/10/2010SoundararajanNotes.pdf (2010)
[43] Soundararajan, K.: Quantum unique ergodicity for SL2(\(\mathbb{Z}\))\(\backslash\)\(\mathbb{H}\). Ann. Math. 172(2), 1529–1538 (2010) · Zbl 1209.58019
[44] Soundararajan, K.: Weak subconvexity for central values of L-functions. Ann. Math. 172(2), 1469–1498 (2010) · Zbl 1234.11066
[45] Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. The Clarendon Press Oxford University Press, New York (1986). Edited and with a preface by D.R. Heath-Brown · Zbl 0601.10026
[46] Venkatesh, A.: Sparse equidistribution problems, period bounds and subconvexity. Ann. Math. 172(2), 989–1094 (2010) · Zbl 1214.11051 · doi:10.4007/annals.2010.172.989
[47] Watson, T.C.: Rankin triple products and quantum chaos. arXiv:0810.0425 [math.NT] (2008)
[48] Weil, A.: Séries de Dirichlet et fonctions automorphes. In: Séminaire Bourbaki, vol. 10, Exp. No. 346, pp. 547–552. Soc. Math. France, Paris (1995)
[49] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions: With an Account of the Principal Transcendental Functions, 4th edn. Cambridge University Press, New York (1962). Reprinted · Zbl 0105.26901
[50] Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55(4), 919–941 (1987) · Zbl 0643.58029 · doi:10.1215/S0012-7094-87-05546-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.