×

Sparse equidistribution problems, period bounds and subconvexity. (English) Zbl 1214.11051

Let \(\Gamma\subset SL_2({\mathbb R})\) be a cocompact lattice. The author proves that there exists \(\gamma_{\text{max}}\) depending on \(\Gamma\) such that for every \( x_0\in\Gamma\backslash \text{SL}_2({\mathbb R}) \) the set \[ \left\{x_0\begin{pmatrix} 1&j^{1+\gamma}\\ 0&1 \end{pmatrix}:j\in{\mathbb N} \right\} \] is equidistributed. If \(\lambda_1\) is the smallest nonzero eigenvalue of the Laplacian on \(\Gamma\backslash{\mathbb H}\), let \[ \alpha=\begin{cases} 0,&\lambda_1\geq \frac14\\ \sqrt{\frac14-\lambda_1},&\text{else}. \end{cases} \] Then we can take \(\gamma_{\text{max}}=\frac{(1-2\alpha)^2}{16(3-2\alpha)}\). The author presents other results on subconvexity of the triple product period in the level aspect over number fields and on bounding Fourier coefficients of automorphic forms.

MSC:

11F03 Modular and automorphic functions
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F30 Fourier coefficients of automorphic forms
58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity

References:

[1] J. Bernstein and A. Reznikov, ”Sobolev norms of automorphic functionals and Fourier coefficients of cusp forms,” C. R. Acad. Sci. Paris Sér. I Math., vol. 327, iss. 2, pp. 111-116, 1998. · Zbl 0915.11030 · doi:10.1016/S0764-4442(98)80001-3
[2] J. Bernstein and A. Reznikov, ”Sobolev norms of automorphic functionals,” Int. Math. Res. Not., vol. 2002, iss. 40, pp. 2155-2174, 2002. · Zbl 1022.11025 · doi:10.1155/S1073792802101139
[3] J. Bernstein and A. Reznikov, ”Periods, subconvexity of \(L\)-functions and representation theory,” J. Differential Geom., vol. 70, iss. 1, pp. 129-141, 2005. · Zbl 1097.11022
[4] V. Blomer, G. Harcos, and P. Michel, ”Bounds for modular \(L\)-functions in the level aspect,” Ann. Sci. École Norm. Sup., vol. 40, iss. 5, pp. 697-740, 2007. · Zbl 1185.11034 · doi:10.1016/j.ansens.2007.05.003
[5] J. Bourgain, ”Pointwise ergodic theorems for arithmetic sets,” Inst. Hautes Études Sci. Publ. Math., iss. 69, pp. 5-45, 1989. · Zbl 0705.28008 · doi:10.1007/BF02698838
[6] J. Bourgain and E. Lindenstrauss, ”Entropy of quantum limits,” Comm. Math. Phys., vol. 233, iss. 1, pp. 153-171, 2003. · Zbl 1018.58019 · doi:10.1007/s00220-002-0770-8
[7] D. A. Burgess, ”On character sums and \(L\)-series,” Proc. London Math. Soc., vol. 12, pp. 193-206, 1962. · Zbl 0106.04004 · doi:10.1112/plms/s3-12.1.193
[8] C. J. Bushnell and G. Henniart, ”An upper bound on conductors for pairs,” J. Number Theory, vol. 65, iss. 2, pp. 183-196, 1997. · Zbl 0884.11049 · doi:10.1006/jnth.1997.2142
[9] L. Clozel and E. Ullmo, ”Équidistribution de mesures algébriques,” Compos. Math., vol. 141, iss. 5, pp. 1255-1309, 2005. · Zbl 1077.22014 · doi:10.1112/S0010437X0500148X
[10] M. Cowling, U. Haagerup, and R. Howe, ”Almost \(L^2\) matrix coefficients,” J. Reine Angew. Math., vol. 387, pp. 97-110, 1988. · Zbl 0638.22004
[11] P. B. Cohen, ”Hyperbolic equidistribution problems on Siegel 3-folds and Hilbert modular varieties,” Duke Math. J., vol. 129, iss. 1, pp. 87-127, 2005. · Zbl 1155.11326 · doi:10.1215/S0012-7094-04-12914-8
[12] W. Duke, J. Friedlander, and H. Iwaniec, ”Class group \(L\)-functions,” Duke Math. J., vol. 79, iss. 1, pp. 1-56, 1995. · Zbl 0838.11058 · doi:10.1215/S0012-7094-95-07901-0
[13] W. Duke, J. Friedlander, and H. Iwaniec, ”Bounds for automorphic \(L\)-functions,” Invent. Math., vol. 112, iss. 1, pp. 1-8, 1993. · Zbl 0765.11038 · doi:10.1007/BF01232422
[14] W. Duke, J. Friedlander, and H. Iwaniec, ”Bounds for automorphic \(L\)-functions. II,” Invent. Math., vol. 115, iss. 2, pp. 219-239, 1994. · Zbl 0812.11032 · doi:10.1007/BF01231759
[15] L. Flaminio and G. Forni, ”Invariant distributions and time averages for horocycle flows,” Duke Math. J., vol. 119, iss. 3, pp. 465-526, 2003. · Zbl 1044.37017 · doi:10.1215/S0012-7094-03-11932-8
[16] J. Friedlander and H. Iwaniec, ”A mean-value theorem for character sums,” Michigan Math. J., vol. 39, iss. 1, pp. 153-159, 1992. · Zbl 0765.11037 · doi:10.1307/mmj/1029004462
[17] A. Good, ”Cusp forms and eigenfunctions of the Laplacian,” Math. Ann., vol. 255, iss. 4, pp. 523-548, 1981. · Zbl 0439.30031 · doi:10.1007/BF01451932
[18] G. Harcos and P. Michel, ”The subconvexity problem for Rankin-Selberg \(L\)-functions and equidistribution of Heegner points. II,” Invent. Math., vol. 163, iss. 3, pp. 581-655, 2006. · Zbl 1111.11027 · doi:10.1007/s00222-005-0468-6
[19] D. A. Hejhal, ”On value distribution properties of automorphic functions along closed horocycles,” in XVI th Rolf Nevanlinna Colloquium, Laine, I. and Martio, O., Eds., Berlin: de Gruyter, 1996, pp. 39-52. · Zbl 0867.11030
[20] H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Madrid: Revista Matemática Iberoamericana, 1995. · Zbl 0847.11028
[21] H. Jacquet and R. P. Langlands, Automorphic Forms on \({ GL}(2)\), New York: Springer-Verlag, 1970, vol. 114. · Zbl 0236.12010 · doi:10.1007/BFb0058988
[22] H. Jacquet, Automorphic Forms on \({ GL}(2)\). Part II, New York: Springer-Verlag, 1972, vol. 278. · Zbl 0243.12005 · doi:10.1007/BFb0058503
[23] H. H. Kim, ”Functoriality for the exterior square of \({ GL}_4\) and the symmetric fourth of \({ GL}_2\),” J. Amer. Math. Soc., vol. 16, iss. 1, pp. 139-183, 2003. · Zbl 1018.11024 · doi:10.1090/S0894-0347-02-00410-1
[24] D. Y. Kleinbock and G. A. Margulis, ”Logarithm laws for flows on homogeneous spaces,” Invent. Math., vol. 138, iss. 3, pp. 451-494, 1999. · Zbl 0934.22016 · doi:10.1007/s002220050350
[25] E. Kowalski, P. Michel, and J. VanderKam, ”Rankin-Selberg \(L\)-functions in the level aspect,” Duke Math. J., vol. 114, iss. 1, pp. 123-191, 2002. · Zbl 1035.11018 · doi:10.1215/S0012-7094-02-11416-1
[26] Y. V. Linnik, Ergodic Properties of Algebraic Fields, New York: Springer-Verlag, 1968, vol. 45. · Zbl 0162.06801
[27] G. A. Margulis, On Some Aspects of the Theory of Anosov Systems, New York: Springer-Verlag, 2004. · Zbl 1140.37010
[28] P. Michel, ”The subconvexity problem for Rankin-Selberg \(L\)-functions and equidistribution of Heegner points,” Ann. of Math., vol. 160, iss. 1, pp. 185-236, 2004. · Zbl 1068.11033 · doi:10.4007/annals.2004.160.185
[29] P. Michel and A. Venkatesh, The subconvexity problem for \(\operatorname{GL}_2\). · Zbl 1376.11040
[30] P. Michel and A. Venkatesh, ”Equidistribution, \(L\)-functions and ergodic theory: on some problems of Yu. V. Linnik,” in Proc. Madrid ICM, Vol. II, 421-457, Zürich: Eur. Math. Soc., 2006. · Zbl 1157.11019
[31] H. Oh, ”Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants,” Duke Math. J., vol. 113, iss. 1, pp. 133-192, 2002. · Zbl 1011.22007 · doi:10.1215/S0012-7094-02-11314-3
[32] M. Ratner, ”Rigidity of time changes for horocycle flows,” Acta Math., vol. 156, iss. 1-2, pp. 1-32, 1986. · Zbl 0694.58036 · doi:10.1007/BF02399199
[33] M. Ratner, ”Raghunathan’s conjectures for \({ SL}(2,\mathbb R)\),” Israel J. Math., vol. 80, iss. 1-2, pp. 1-31, 1992. · Zbl 0785.22013 · doi:10.1007/BF02808152
[34] M. Ratner, ”The rate of mixing for geodesic and horocycle flows,” Ergodic Theory Dynam. Systems, vol. 7, iss. 2, pp. 267-288, 1987. · Zbl 0623.22008 · doi:10.1017/S0143385700004004
[35] A. Reznikov, ”Rankin-Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms,” J. Amer. Math. Soc., vol. 21, iss. 2, pp. 439-477, 2008. · Zbl 1188.11024 · doi:10.1090/S0894-0347-07-00581-4
[36] P. Sarnak, ”Fourth moments of Grössencharakteren zeta functions,” Comm. Pure Appl. Math., vol. 38, iss. 2, pp. 167-178, 1985. · Zbl 0577.10026 · doi:10.1002/cpa.3160380204
[37] P. Sarnak, ”Integrals of products of eigenfunctions,” Internat. Math. Res. Notices, iss. 6, p. 251, 1994. · Zbl 0833.11020 · doi:10.1155/S1073792894000280
[38] P. Sarnak, ”Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series,” Comm. Pure Appl. Math., vol. 34, iss. 6, pp. 719-739, 1981. · Zbl 0501.58027 · doi:10.1002/cpa.3160340602
[39] N. A. Shah, ”Limit distributions of polynomial trajectories on homogeneous spaces,” Duke Math. J., vol. 75, iss. 3, pp. 711-732, 1994. · Zbl 0818.22005 · doi:10.1215/S0012-7094-94-07521-2
[40] Y. Shalom, ”Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group,” Ann. of Math., vol. 152, iss. 1, pp. 113-182, 2000. · Zbl 0970.22011 · doi:10.2307/2661380
[41] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Publications of the Mathematical Society of Japan, Iwanami Shoten, Publishers, Tokyo and Princeton Univ. Press, 1971. · Zbl 0221.10029
[42] P. Söhne, ”An upper bound for Hecke zeta-functions with Groessencharacters,” J. Number Theory, vol. 66, iss. 2, pp. 225-250, 1997. · Zbl 0885.11062 · doi:10.1006/jnth.1997.2167
[43] K. Soundararajan, ”Nonvanishing of quadratic Dirichlet \(L\)-functions at \(s=\frac12\),” Ann. of Math., vol. 152, iss. 2, pp. 447-488, 2000. · Zbl 0964.11034 · doi:10.2307/2661390
[44] A. Strömbergsson, ”On the uniform equidistribution of long closed horocycles,” Duke Math. J., vol. 123, iss. 3, pp. 507-547, 2004. · Zbl 1060.37023 · doi:10.1215/S0012-7094-04-12334-6
[45] T. Tao, ”The ergodic and combinatorial approaches to Szemerédi’s theorem,” in Additive Combinatorics, Providence, RI: Amer. Math. Soc., 2007, vol. 43, pp. 145-193. · Zbl 1159.11005
[46] J. -L. Waldspurger, ”Quelques propriétés arithmétiques de certaines formes automorphes sur \({ GL}(2)\),” Compositio Math., vol. 54, iss. 2, pp. 121-171, 1985. · Zbl 0567.10022
[47] V. Vatsal, ”Uniform distribution of Heegner points,” Invent. Math., vol. 148, iss. 1, pp. 1-46, 2002. · Zbl 1119.11035 · doi:10.1007/s002220100183
[48] M. Woodbury, PhD Thesis , University of Wisconsin.
[49] S. Zhang, ”Equidistribution of CM-points on quaternion Shimura varieties,” Int. Math. Res. Not., vol. 2005, iss. 59, pp. 3657-3689, 2005. · Zbl 1096.14016 · doi:10.1155/IMRN.2005.3657
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.