×

Equidistribution of cusp forms in the level aspect. (English) Zbl 1273.11069

Summary: Let \(f\) traverse a sequence of classical holomorphic newforms of fixed weight and increasing square-free level \(q\to\infty\). We prove that the pushforward of the mass of \(f\) to the modular curve of level 1 equidistributes with respect to the Poincaré measure.
Our result answers affirmatively the square-free level case of a conjecture spelled out in 2002 by E. Kowalski, P. Michel and J. Vanderkam [Duke Math. J. 114, 123–191 (2002; Zbl 1035.11018)] in the spirit of a conjecture that Z. Rudnick and P. Sarnak [Commun. Math. Phys. 161, No. 1, 195–213 (1994; Zbl 0836.58043)] made in 1994.
Our proof follows the strategy of R. Holowinsky and K. Soundararajan [Ann. Math. (2) 172, No. 2, 1499–1516 (2010; Zbl 1214.11054); ibid., 1469–1498 (2010; Zbl 1234.11066); ibid., 1517–1528 (2010; Zbl 1211.11050), who showed that newforms of level 1 and large weight have equidistributed mass. The new ingredients required to treat forms of fixed weight and large level are an adaptation of Holowinsky’s reduction of the problem to one of bounding shifted sums of Fourier coefficients, a refinement of his bounds for shifted sums, an evaluation of the \(p\)-adic integral needed to extend Watson’s formula to the case of three newforms of not necessarily equal square-free levels, and some additional technical work in the problematic case that the level has many small prime factors.

MSC:

11F11 Holomorphic modular forms of integral weight
11M36 Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas)
58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity

References:

[1] A. O. L. Atkin and J. Lehner, Hecke operators on \Gamma 0 ( m ), Math. Ann. 185 , 1970, 134-160. · Zbl 0177.34901 · doi:10.1007/BF01359701
[2] S. Böcherer and R. Schulze-Pillot, “On the central critical value of the triple product L -function” in Number Theory (Paris, 1993-1994) , London Math. Soc. Lecture Note Ser. 235 , Cambridge Univ. Press, Cambridge, 1996, 1-46. · Zbl 0924.11034
[3] D. Bump, Automorphic Forms and Representations , Cambridge Stud. Adv. Math. 55 , Cambridge Univ. Press, Cambridge, 1997. · Zbl 0911.11022
[4] P. Deligne, “Formes modulaires et représentations \ell -adiques” in Séminaire Bourbaki 1968/1969 , Exp. 355, Lecture Notes in Math. 179 , Springer, Berlin, 1971. · Zbl 0206.49901
[5] P. Deligne, La conjecture de Weil, I , Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273-307. · Zbl 0287.14001 · doi:10.1007/BF02684373
[6] J. Friedlander and H. Iwaniec, Opera de Cribro , Amer. Math. Soc. Colloq. Publ. 57 , Amer. Math. Soc., Providence, 2010. · Zbl 1226.11099
[7] P. B. Garrett, Decomposition of Eisenstein series: Rankin triple products , Ann. of Math. (2) 125 (1987), 209-235. · Zbl 0625.10020 · doi:10.2307/1971310
[8] S. S. Gelbart, Automorphic Forms on Adèle Groups , Ann. of Math. Stud. 83 , Princeton Univ. Press, Princeton, 1975. · Zbl 0329.10018
[9] S. S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Éc. Norm. Sup. (4) 11 (1978), 471-542. · Zbl 0406.10022
[10] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras , Lecture Notes in Math. 260 , Springer, Berlin, 1972. · Zbl 0244.12011 · doi:10.1007/BFb0070263
[11] B. H. Gross and S. S. Kudla, Heights and the central critical values of triple product L-functions , Compos. Math. 81 (1992), 143-209. · Zbl 0807.11027
[12] M. Harris and S. S. Kudla, The central critical value of a triple product L-function , Ann. of Math. (2) 133 (1991), 605-672. · Zbl 0731.11031 · doi:10.2307/2944321
[13] J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero , with an appendix “An effective zero-free region” by D. Goldfeld, Hoffstein, and D. Lieman, Ann. of Math. (2) 140 (1994), 161-176. · Zbl 0814.11032 · doi:10.2307/2118543
[14] R. Holowinsky, Sieving for mass equidistribution , Ann. of Math. (2) 172 (2010), 1499-1516. · Zbl 1214.11054
[15] R. Holowinsky and K. Soundararajan, Mass equidistribution for Hecke eigenforms , Ann. of Math. (2) 172 (2010), 1517-1528. · Zbl 1211.11050
[16] A. Ichino, Trilinear forms and the central values of triple product L-functions , Duke Math. J. 145 (2008), 281-307. · Zbl 1222.11065 · doi:10.1215/00127094-2008-052
[17] A. Ichino and T. Ikeda, On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture , Geom. Funct. Anal. 19 (2010), 1378-1425. · Zbl 1216.11057 · doi:10.1007/s00039-009-0040-4
[18] H. Iwaniec, Topics in Classical Automorphic Forms , Grad. Stud. Math. 17 , Amer. Math. Soc., Providence, 1997. · Zbl 0905.11023
[19] H. Iwaniec, Spectral Methods of Automorphic Forms , 2nd ed., Grad. Stud. Math. 53 , Amer. Math. Soc., Providence, 2002. · Zbl 1006.11024
[20] E. Kowalski, P. Michel, and J. VanderKam, Rankin-Selberg L-functions in the level aspect , Duke Math. J. 114 (202), 123-191. · Zbl 1035.11018 · doi:10.1215/S0012-7094-02-11416-1
[21] S. Koyama, Equidistribution of Eisenstein series in the level aspect , Comm. Math. Phys. 289 (2009), 1131-1150. · Zbl 1226.11056 · doi:10.1007/s00220-009-0764-x
[22] E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity , Ann. of Math. (2) 163 (2006), 165-219. · Zbl 1104.22015 · doi:10.4007/annals.2006.163.165
[23] W. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on PSL 2 ( Z )H n =1 2 , Publ. Math. Inst. Hautes Études Sci. 81 (1995), 207-237. · Zbl 0852.11024 · doi:10.1007/BF02699377
[24] W. Luo and P. Sarnak, Mass equidistribution for Hecke eigenforms , Comm. Pure Appl. Math. 56 (2003), 874-891. · Zbl 1044.11022 · doi:10.1002/cpa.10078
[25] M. Nair, Multiplicative functions of polynomial values in short intervals , Acta Arith. 62 (1992), 257-269. · Zbl 0768.11038
[26] P. Nelson, Mass equidistribution of Hilbert modular eigenforms , preprint, to appear in Ramanujan J., [math.NT] · Zbl 0783.26003
[27] I. Piatetski-Shapiro and S. Rallis, Rankin triple L functions , Compos. Math. 64 (1987), 31-115. · Zbl 0637.10023
[28] D. Prasad, Trilinear forms for representations of GL(2) and local \varepsilon - factors , Compos. Math. 75 (1990), 1-46. · Zbl 0731.22013
[29] R. A. Rankin, Contributions to the theory of Ramanujan’s function \tau ( n ) and similar arithmetical functions, I: The zeros of the function \sum n =1 \infty \tau ( n )/ n s on tyhe line \(\mathfrak{R}s=13/2\); II: The order of the Fourier coefficients of integral modular forms , Math. Proc. Cambridge Philos. Soc. 35 (1939), 351-372. · JFM 65.0353.01 · doi:10.1017/S0305004100021095
[30] Z. Rudnick, On the asymptotic distribution of zeros of modular forms , Int. Math. Res. Not. IMRN 2005 , 2059-2074. · Zbl 1162.11345 · doi:10.1155/IMRN.2005.2059
[31] Z. Rudnick and P. Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds , Comm. Math. Phys. 161 (1994), 195-213. · Zbl 0836.58043 · doi:10.1007/BF02099418
[32] P. Sarnak, “Arithmetic quantum chaos” in The Schur lectures (Tel Aviv, 1992) , Israel Math. Conf. Proc. 8 , Bar-Ilan Univ., Ramat Gan, Israel, 1995, 183-236. · Zbl 0831.58045
[33] P. Sarnak, Recent progress on the quantum unique ergodicity conjecture , Bull. Amer. Math. Soc. (N.S.) 48 (2011), 211-228. · Zbl 1234.58007 · doi:10.1090/S0273-0979-2011-01323-4
[34] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist , Arch. Math. Naturvid. 43 (1940), 47-50. · Zbl 0023.22201
[35] A. Selberg, “On the estimation of Fourier coefficients of modular forms” in Proceedings of Symposia in Pure Math., Vol. VIII , Amer. Math. Soc., Providence, 1965, 1-15. · Zbl 0142.33903
[36] J.-P. Serre, A Course in Arithmetic , Grad. Texts in Math. 7 , Springer, New York, 1973. · Zbl 0256.12001
[37] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions , Publ. Math. Soc. Japan 11 , Iwanami Shoten, Tokyo, 1971. · Zbl 0221.10029
[38] G. Shimura, On the holomorphy of certain Dirichlet series , Proc. Lond. Math. Soc. (3) 31 (1975), 79-98. · Zbl 0311.10029 · doi:10.1112/plms/s3-31.1.79
[39] K. Soundararajan, Quantum unique ergodicity for SL 2 (\Bbb Z) \Bbb H, Ann. of Math. (2) 172 (2010), 1529-1538. · Zbl 1209.58019
[40] K. Soundararajan, Weak subconvexity for central values of L-functions , Ann. of Math. (2) 172 (2010), 1469-1498. · Zbl 1234.11066
[41] M.-F. Vignéras, Arithmétique des algèbres de quaternions , Lecture Notes in Math. 800 , Springer, Berlin, 1980. · Zbl 0422.12008
[42] T. C. Watson, Rankin triple products and quantum chaos , Ph.D. dissertation, Princeton University, Princeton, N.J., 2002, [math.NT].
[43] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis , 4th ed., Cambridge Univ. Press, New York, 1962. · Zbl 0105.26901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.