×

Emergent dark matter in late time universe on holographic screen. (English) Zbl 1402.85007

Summary: We discuss a scenario that the dark matter in late time universe emerges as part of the holographic stress-energy tensor on the hypersurface in higher dimensional flat spacetime. Firstly we construct a toy model with a de Sitter hypersurface as the holographic screen in the flat bulk. After adding the baryonic matter on the screen, we assume that both of the dark matter and dark energy can be described by the Brown-York stress-energy tensor. From the Hamiltonian constraint equation in the flat bulk, we find an interesting relation between the dark matter and baryonic matter’s energy density parameters, by comparing with the Lambda cold dark matter parameterization. We further compare this holographic embedding of emergent dark matter with traditional braneworld scenario and present an alternative interpretation as the holographic universe. It can be reduced to our toy constraint in the late time universe, with the new parameterization of the Friedmann equation. We also comment on the possible connection with Verlinde’s emergent gravity, where the dark matter is treated as the elastic response of the baryonic matter on the de Sitter spacetime background. We show that from the holographic de Sitter model with elasticity, the Tully-Fisher relation and the dark matter distribution in the galaxy scale can be derived.

MSC:

85A40 Astrophysical cosmology
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83E15 Kaluza-Klein and other higher-dimensional theories
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C40 Gravitational energy and conservation laws; groups of motions

References:

[1] Clifton, T.; Ferreira, PG; Padilla, A.; Skordis, C., Modified Gravity and Cosmology, Phys. Rept., 513, 1, (2012) · doi:10.1016/j.physrep.2012.01.001
[2] Famaey, B.; McGaugh, S., Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions, Living Rev. Rel., 15, 10, (2012) · doi:10.12942/lrr-2012-10
[3] M. Milgrom, A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J.270 (1983) 365 [INSPIRE].
[4] T. Marrodán Undagoitia and L. Rauch, Dark matter direct-detection experiments, J. Phys.G 43 (2016) 013001 [arXiv:1509.08767] [INSPIRE].
[5] Tully, RB; Fisher, JR, A New method of determining distances to galaxies, Astron. Astrophys., 54, 661, (1977)
[6] R. Sancisi, The Visible matter-Dark matter coupling, astro-ph/0311348 [INSPIRE].
[7] Verlinde, EP, Emergent Gravity and the Dark Universe, SciPost Phys., 2, 016, (2017) · doi:10.21468/SciPostPhys.2.3.016
[8] Verlinde, EP, On the Origin of Gravity and the Laws of Newton, JHEP, 04, 029, (2011) · Zbl 1260.81284 · doi:10.1007/JHEP04(2011)029
[9] R.-G. Cai, L.-M. Cao and N. Ohta, Friedmann Equations from Entropic Force, Phys. Rev.D 81 (2010) 061501 [arXiv:1001.3470] [INSPIRE].
[10] Dai, D-C; Stojkovic, D., Inconsistencies in Verlinde’s emergent gravity, JHEP, 11, 007, (2017) · Zbl 1383.83112 · doi:10.1007/JHEP11(2017)007
[11] J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev.D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
[12] G.R. Dvali, G. Gabadadze and M. Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett.B 485 (2000) 208 [hep-th/0005016] [INSPIRE]. · Zbl 0961.83045
[13] C. Deffayet, Cosmology on a brane in Minkowski bulk, Phys. Lett.B 502 (2001) 199 [hep-th/0010186] [INSPIRE]. · Zbl 0977.83103
[14] C. Deffayet, G.R. Dvali and G. Gabadadze, Accelerated universe from gravity leaking to extra dimensions, Phys. Rev.D 65 (2002) 044023 [astro-ph/0105068] [INSPIRE].
[15] B. Carter, Essentials of classical brane dynamics, Int. J. Theor. Phys.40 (2001) 2099 [gr-qc/0012036] [INSPIRE]. · Zbl 1007.83035
[16] Emparan, R.; Harmark, T.; Niarchos, V.; Obers, NA, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett., 102, 191301, (2009) · Zbl 1371.83097 · doi:10.1103/PhysRevLett.102.191301
[17] Emparan, R.; Harmark, T.; Niarchos, V.; Obers, NA, Essentials of Blackfold Dynamics, JHEP, 03, 063, (2010) · Zbl 1271.83050 · doi:10.1007/JHEP03(2010)063
[18] Emparan, R.; Harmark, T.; Niarchos, V.; Obers, NA, New Horizons for Black Holes and Branes, JHEP, 04, 046, (2010) · Zbl 1272.83049 · doi:10.1007/JHEP04(2010)046
[19] Armas, J.; Gath, J.; Obers, NA, Black Branes as Piezoelectrics, Phys. Rev. Lett., 109, 241101, (2012) · doi:10.1103/PhysRevLett.109.241101
[20] J. Armas and N.A. Obers, Relativistic Elasticity of Stationary Fluid Branes, Phys. Rev.D 87 (2013) 044058 [arXiv:1210.5197] [INSPIRE]. · Zbl 1342.83316
[21] J. Armas and T. Harmark, Black Holes and Biophysical (Mem)-branes, Phys. Rev.D 90 (2014) 124022 [arXiv:1402.6330] [INSPIRE].
[22] Alberte, L.; Baggioli, M.; Khmelnitsky, A.; Pujolàs, O., Solid Holography and Massive Gravity, JHEP, 02, 114, (2016) · Zbl 1388.83559 · doi:10.1007/JHEP02(2016)114
[23] Alberte, L.; Baggioli, M.; Pujolàs, O., Viscosity bound violation in holographic solids and the viscoelastic response, JHEP, 07, 074, (2016) · Zbl 1390.83150 · doi:10.1007/JHEP07(2016)074
[24] Alberte, L.; Ammon, M.; Baggioli, M.; Jiménez, A.; Pujolàs, O., Black hole elasticity and gapped transverse phonons in holography, JHEP, 01, 129, (2018) · Zbl 1384.83021 · doi:10.1007/JHEP01(2018)129
[25] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
[26] DES collaboration, T.M.C. Abbott et al., Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev.D 98 (2018) 043526 [arXiv:1708.01530] [INSPIRE].
[27] Maartens, R.; Koyama, K., Brane-World Gravity, Living Rev. Rel., 13, 5, (2010) · Zbl 1316.83038 · doi:10.12942/lrr-2010-5
[28] P. Binetruy, C. Deffayet and D. Langlois, Nonconventional cosmology from a brane universe, Nucl. Phys.B 565 (2000) 269 [hep-th/9905012] [INSPIRE]. · Zbl 0965.83036
[29] Dick, R., Brane worlds, Class. Quant. Grav., 18, r1, (2001) · Zbl 0996.83001 · doi:10.1088/0264-9381/18/17/201
[30] R. Dick, Standard cosmology in the DGP brane model, Acta Phys. Polon.B 32 (2001) 3669 [hep-th/0110162] [INSPIRE].
[31] A. Lue, Global structure of Deffayet (Dvali-Gabadadze-Porrati) cosmologies, Phys. Rev.D 67 (2003) 064004 [hep-th/0208169] [INSPIRE]. · Zbl 1222.83173
[32] A. Lue, The phenomenology of dvali-gabadadze-porrati cosmologies, Phys. Rept.423 (2006) 1 [astro-ph/0510068] [INSPIRE].
[33] Y.-S. Song, I. Sawicki and W. Hu, Large-Scale Tests of the DGP Model, Phys. Rev.D 75 (2007) 064003 [astro-ph/0606286] [INSPIRE].
[34] W. Fang, S. Wang, W. Hu, Z. Haiman, L. Hui and M. May, Challenges to the DGP Model from Horizon-Scale Growth and Geometry, Phys. Rev.D 78 (2008) 103509 [arXiv:0808.2208] [INSPIRE].
[35] L. Lombriser, W. Hu, W. Fang and U. Seljak, Cosmological Constraints on DGP Braneworld Gravity with Brane Tension, Phys. Rev.D 80 (2009) 063536 [arXiv:0905.1112] [INSPIRE].
[36] R. Maartens, Brane world gravity, Living Rev. Rel.7 (2004) 7 [gr-qc/0312059] [INSPIRE]. · Zbl 1071.83571
[37] N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett.B 429 (1998) 263 [hep-ph/9803315] [INSPIRE]. · Zbl 1355.81103
[38] N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev.D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].
[39] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE]. · Zbl 0946.81063
[40] Randall, L.; Sundrum, R., An Alternative to compactification, Phys. Rev. Lett., 83, 4690, (1999) · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[41] T. Shiromizu, K.-i. Maeda and M. Sasaki, The Einstein equation on the 3-brane world, Phys. Rev.D 62 (2000) 024012 [gr-qc/9910076] [INSPIRE].
[42] Bredberg, I.; Keeler, C.; Lysov, V.; Strominger, A., Wilsonian Approach to Fluid/Gravity Duality, JHEP, 03, 141, (2011) · Zbl 1301.81165 · doi:10.1007/JHEP03(2011)141
[43] Bredberg, I.; Keeler, C.; Lysov, V.; Strominger, A., From Navier-Stokes To Einstein, JHEP, 07, 146, (2012) · Zbl 1397.83044 · doi:10.1007/JHEP07(2012)146
[44] M. Parikh and F. Wilczek, An Action for black hole membranes, Phys. Rev.D 58 (1998) 064011 [gr-qc/9712077] [INSPIRE].
[45] Marolf, D.; Rangamani, M.; Raamsdonk, M., Holographic models of de Sitter QFTs, Class. Quant. Grav., 28, 105015, (2011) · Zbl 1217.83032 · doi:10.1088/0264-9381/28/10/105015
[46] A. Buchel, Gauge/gravity correspondence in accelerating universe, Phys. Rev.D 65 (2002) 125015 [hep-th/0203041] [INSPIRE].
[47] Alishahiha, M.; Karch, A.; Silverstein, E.; Tong, D., The dS/dS correspondence, AIP Conf. Proc., 743, 393, (2005) · doi:10.1063/1.1848341
[48] Li, M.; Pang, Y., Holographic de Sitter Universe, JHEP, 07, 053, (2011) · Zbl 1298.81188 · doi:10.1007/JHEP07(2011)053
[49] C.-S. Chu and D. Giataganas, AdS/dS CFT Correspondence, Phys. Rev.D 94 (2016) 106013 [arXiv:1604.05452] [INSPIRE].
[50] Y.-F. Cai, S. Lin, J. Liu and J.-R. Sun, Holographic Preheating: Quasi-Normal Modes and Holographic Renormalization, arXiv:1612.04394 [INSPIRE].
[51] Charmousis, C.; Kiritsis, E.; Nitti, F., Holographic self-tuning of the cosmological constant, JHEP, 09, 031, (2017) · Zbl 1382.83104 · doi:10.1007/JHEP09(2017)031
[52] S.S. Gubser, AdS/CFT and gravity, Phys. Rev.D 63 (2001) 084017 [hep-th/9912001] [INSPIRE].
[53] I. Savonije and E.P. Verlinde, CFT and entropy on the brane, Phys. Lett.B 507 (2001) 305 [hep-th/0102042] [INSPIRE]. · Zbl 0977.83114
[54] N.J. Kim, H.W. Lee, Y.S. Myung and G. Kang, Holographic principle in the BDL brane cosmology, Phys. Rev.D 64 (2001) 064022 [hep-th/0104159] [INSPIRE].
[55] Shiromizu, T.; Torii, T.; Ida, D., Brane world and holography, JHEP, 03, 007, (2002) · doi:10.1088/1126-6708/2002/03/007
[56] S. Kanno and J. Soda, Brane world effective action at low-energies and AdS/CFT, Phys. Rev.D 66 (2002) 043526 [hep-th/0205188] [INSPIRE].
[57] Apostolopoulos, PS; Siopsis, G.; Tetradis, N., Cosmology from an AdS Schwarzschild black hole via holography, Phys. Rev. Lett., 102, 151301, (2009) · doi:10.1103/PhysRevLett.102.151301
[58] S. Kanno, M. Sasaki and J. Soda, Holographic Dual of de Sitter Universe with AdS Bubbles, Nucl. Phys.B 855 (2012) 361 [arXiv:1107.1491] [INSPIRE]. · Zbl 1229.83037
[59] A. Buchel, Verlinde Gravity and AdS/CFT, arXiv:1702.08590 [INSPIRE].
[60] A. Buchel, Ringing in de Sitter spacetime, Nucl. Phys.B 928 (2018) 307 [arXiv:1707.01030] [INSPIRE]. · Zbl 1381.81070
[61] Buchel, A.; Heller, MP; Noronha, J., Entropy Production, Hydrodynamics and Resurgence in the Primordial quark-gluon Plasma from Holography, Phys. Rev., D 94, 106011, (2016)
[62] J. Frieman, M. Turner and D. Huterer, Dark Energy and the Accelerating Universe, Ann. Rev. Astron. Astrophys.46 (2008) 385 [arXiv:0803.0982] [INSPIRE].
[63] Kaplan, DB; Sun, S., Spacetime as a topological insulator: Mechanism for the origin of the fermion generations, Phys. Rev. Lett., 108, 181807, (2012) · doi:10.1103/PhysRevLett.108.181807
[64] P.M. Chesler and A. Loeb, Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves, Phys. Rev. Lett.119 (2017) 031102 [arXiv:1704.05116] [INSPIRE].
[65] M.A. Green, J.W. Moffat and V.T. Toth, Modified Gravity (MOG), the speed of gravitational radiation and the event GW170817/GRB170817A, Phys. Lett.B 780 (2018) 300 [arXiv:1710.11177] [INSPIRE]. · Zbl 1390.83280
[66] Bielleman, S.; Ibáñez, LE; Pedro, FG; Valenzuela, I.; Wieck, C., The DBI Action, Higher-derivative Supergravity and Flattening Inflaton Potentials, JHEP, 05, 095, (2016) · Zbl 1388.83745 · doi:10.1007/JHEP05(2016)095
[67] Carone, CD; Erlich, J.; Vaman, D., Emergent Gravity from Vanishing Energy-Momentum Tensor, JHEP, 03, 134, (2017) · Zbl 1377.83077 · doi:10.1007/JHEP03(2017)134
[68] S. Hossenfelder, Covariant version of Verlinde’s emergent gravity, Phys. Rev.D 95 (2017) 124018 [arXiv:1703.01415] [INSPIRE].
[69] Dai, D-C; Stojkovic, D., Inconsistencies in Verlinde’s emergent gravity, JHEP, 11, 007, (2017) · Zbl 1383.83112 · doi:10.1007/JHEP11(2017)007
[70] T. Kobayashi and T. Tanaka, The Spectrum of gravitational waves in Randall-Sundrum braneworld cosmology, Phys. Rev.D 73 (2006) 044005 [hep-th/0511186] [INSPIRE].
[71] Andriot, D.; Lucena Gómez, G., Signatures of extra dimensions in gravitational waves, JCAP, 06, 048, (2017) · Zbl 1515.83060 · doi:10.1088/1475-7516/2017/06/048
[72] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc.C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
[73] Susskind, L., The World as a hologram, J. Math. Phys., 36, 6377, (1995) · Zbl 0850.00013 · doi:10.1063/1.531249
[74] Strominger, A., The dS/CFT correspondence, JHEP, 10, 034, (2001) · doi:10.1088/1126-6708/2001/10/034
[75] P. McFadden and K. Skenderis, Holography for Cosmology, Phys. Rev.D 81 (2010) 021301 [arXiv:0907.5542] [INSPIRE].
[76] G. Compere, P. McFadden, K. Skenderis and M. Taylor, The Holographic fluid dual to vacuum Einstein gravity, JHEP07 (2011) 050 [arXiv:1103.3022] [INSPIRE]. · Zbl 1298.83013
[77] Compere, G.; McFadden, P.; Skenderis, K.; Taylor, M., The relativistic fluid dual to vacuum Einstein gravity, JHEP, 03, 076, (2012) · Zbl 1309.81150 · doi:10.1007/JHEP03(2012)076
[78] C. Eling, A. Meyer and Y. Oz, The Relativistic Rindler Hydrodynamics, JHEP05 (2012) 116 [arXiv:1201.2705] [INSPIRE].
[79] V. Lysov and A. Strominger, From Petrov-Einstein to Navier-Stokes, arXiv:1104.5502 [INSPIRE].
[80] Cai, R-G; Li, L.; Yang, Q.; Zhang, Y-L, Petrov type-I Condition and Dual Fluid Dynamics, JHEP, 04, 118, (2013) · Zbl 1342.83024 · doi:10.1007/JHEP04(2013)118
[81] R.-G. Cai, Q. Yang and Y.-L. Zhang, Petrov type-I Spacetime and Dual Relativistic Fluids, Phys. Rev.D 90 (2014) 041901 [arXiv:1401.7792] [INSPIRE].
[82] Khimphun, S.; Lee, B-H; Park, C.; Zhang, Y-L, Rindler Fluid with Weak Momentum Relaxation, JHEP, 01, 058, (2018) · Zbl 1384.81107 · doi:10.1007/JHEP01(2018)058
[83] Maldacena, J.; Pimentel, GL, Entanglement entropy in de Sitter space, JHEP, 02, 038, (2013) · Zbl 1342.83253 · doi:10.1007/JHEP02(2013)038
[84] Jensen, K.; Karch, A., Holographic Dual of an Einstein-Podolsky-Rosen Pair has a Wormhole, Phys. Rev. Lett., 111, 211602, (2013) · doi:10.1103/PhysRevLett.111.211602
[85] Sonner, J., Holographic Schwinger Effect and the Geometry of Entanglement, Phys. Rev. Lett., 111, 211603, (2013) · doi:10.1103/PhysRevLett.111.211603
[86] Chernicoff, M.; Güijosa, A.; Pedraza, JF, Holographic EPR Pairs, Wormholes and Radiation, JHEP, 10, 211, (2013) · doi:10.1007/JHEP10(2013)211
[87] J.-W. Chen, S. Sun and Y.-L. Zhang, Holographic Bell Inequality, arXiv:1612.09513 [INSPIRE].
[88] M. Milgrom and R.H. Sanders, Perspective on MOND emergence from Verlinde’s “emergent gravity” and its recent test by weak lensing, arXiv:1612.09582 [INSPIRE].
[89] M. Cadoni, R. Casadio, A. Giusti, W. Mück and M. Tuveri, Effective Fluid Description of the Dark Universe, Phys. Lett.B 776 (2018) 242 [arXiv:1707.09945] [INSPIRE].
[90] A. Kamada, M. Kaplinghat, A.B. Pace and H.-B. Yu, How the Self-Interacting Dark Matter Model Explains the Diverse Galactic Rotation Curves, Phys. Rev. Lett.119 (2017) 111102 [arXiv:1611.02716] [INSPIRE].
[91] S. Tulin, H.-B. Yu and K.M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure, Phys. Rev.D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].
[92] L. Berezhiani and J. Khoury, Dark Matter Superfluidity and Galactic Dynamics, Phys. Lett.B 753 (2016) 639 [arXiv:1506.07877] [INSPIRE]. · Zbl 1367.85002
[93] R.-G. Cai and S.-J. Wang, Dark matter superfluid and DBI dark energy, Phys. Rev.D 93 (2016) 023515 [arXiv:1511.00627] [INSPIRE].
[94] Raamsdonk, M., Building up spacetime with quantum entanglement, Gen. Rel. Grav., 42, 2323, (2010) · Zbl 1200.83052 · doi:10.1007/s10714-010-1034-0
[95] Ge, X-H; Wang, B., Quantum computational complexity, Einstein’s equations and accelerated expansion of the Universe, JCAP, 02, 047, (2018) · Zbl 1527.83137 · doi:10.1088/1475-7516/2018/02/047
[96] Cai, R-G; Kim, SP, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe, JHEP, 02, 050, (2005) · doi:10.1088/1126-6708/2005/02/050
[97] R.-G. Cai and L.-M. Cao, Unified first law and thermodynamics of apparent horizon in FRW universe, Phys. Rev.D 75 (2007) 064008 [gr-qc/0611071] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.