×

The holographic fluid dual to vacuum Einstein gravity. (English) Zbl 1298.83013

Summary: We present an algorithm for systematically reconstructing a solution of the (\(d + 2\))-dimensional vacuum Einstein equations from a (\(d + 1\))-dimensional fluid, extending the non-relativistic hydrodynamic expansion of I. Bredberg et al. in [“From Navier-Stokes to Einstein”, arXiv:1101.2451] to arbitrary order. The fluid satisfies equations of motion which are the incompressible Navier-Stokes equations, corrected by specific higher-derivative terms. The uniqueness and regularity of this solution is established to all orders and explicit results are given for the bulk metric and the stress tensor of the dual fluid through fifth order in the hydrodynamic expansion. We establish the validity of a relativistic hydrodynamic description for the dual fluid, which has the unusual property of having a vanishing equilibrium energy density. The gravitational results are used to identify transport coefficients of the dual fluid, which also obeys an interesting and exact constraint on its stress tensor. We propose novel Lagrangian models which realise key properties of the holographic fluid.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
81T13 Yang-Mills and other gauge theories in quantum field theory
81V17 Gravitational interaction in quantum theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
35Q30 Navier-Stokes equations

References:

[1] R. Beig and B. Schmidt, Einstein’s equations near spatial infinity, Commun. Math. Phys.87 (1982) 65. · Zbl 0504.53025 · doi:10.1007/BF01211056
[2] R. Beig, Integration of Einsteins equations near spatial infinity, Proc. R. Soc.A 391 (1984) 295. · Zbl 0533.53034
[3] S. de Haro, K. Skenderis and S.N. Solodukhin, Gravity in warped compactifications and the holographic stress tensor, Class. Quant. Grav.18 (2001) 3171 [hep-th/0011230] [SPIRES]. · Zbl 0999.83060 · doi:10.1088/0264-9381/18/16/307
[4] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19 (2002) 5849 [hep-th/0209067] [SPIRES]. · Zbl 1044.83009 · doi:10.1088/0264-9381/19/22/306
[5] I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP11 (2010) 014 [arXiv:1007.4592] [SPIRES]. · Zbl 1294.81227 · doi:10.1007/JHEP11(2010)014
[6] I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes to Einstein, arXiv:1101.2451 [SPIRES]. · Zbl 1397.83044
[7] I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP03 (2011) 141 [arXiv:1006.1902] [SPIRES]. · Zbl 1301.81165 · doi:10.1007/JHEP03(2011)141
[8] I. Fouxon and Y. Oz, Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations, Phys. Rev. Lett.101 (2008) 261602 [arXiv:0809.4512] [SPIRES]. · doi:10.1103/PhysRevLett.101.261602
[9] S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP08 (2009) 059 [arXiv:0810.1545] [SPIRES]. · doi:10.1088/1126-6708/2009/08/059
[10] C. Eling, I. Fouxon and Y. Oz, The incompressible Navier-Stokes equations from membrane dynamics, Phys. Lett.B 680 (2009) 496 [arXiv:0905.3638] [SPIRES].
[11] T. Padmanabhan, Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces, Phys. Rev.D 83 (2011) 044048 [arXiv:1012.0119] [SPIRES].
[12] T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, Ph.D. This, Université Pierre et Marie Curie, Paris VI, Paris France (1979).
[13] Damour, T.; Ruffini, R. (ed.), Surface effects in black hole physics (1982), Amsterdam The Netherlands
[14] K.S. Thorne, R.H. Price, and D.A. Macdonald, Black holes: the membrane paradigm, Yale University Press, New Haven U.S.A. (1986). · Zbl 1374.83002
[15] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP02 (2008) 045 [arXiv:0712.2456] [SPIRES]. · doi:10.1088/1126-6708/2008/02/045
[16] L. Landau and E. Lifshitz, Fluid mechanics: course of theoretical physics vol. 6, Elsevier Butterworth-Heinemann, Oxford U.K. (1959).
[17] N. Afshordi, D.J.H. Chung and G. Geshnizjani, Cuscuton: a causal field theory with an infinite speed of sound, Phys. Rev.D 75 (2007) 083513 [hep-th/0609150] [SPIRES].
[18] N. Afshordi, D.J.H. Chung, M. Doran and G. Geshnizjani, Cuscuton cosmology: dark energy meets modified gravity, Phys. Rev.D 75 (2007) 123509 [astro-ph/0702002] [SPIRES].
[19] J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev.D 47 (1993) 1407 [gr-qc/9209012] [SPIRES].
[20] J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys.31 (1973) 161 [SPIRES]. · Zbl 1125.83309 · doi:10.1007/BF01645742
[21] P.K. Townsend, Black holes, gr-qc/9707012 [SPIRES]. · Zbl 1009.83512
[22] S. Bhattacharyya et al., Local fluid dynamical entropy from gravity, JHEP06 (2008) 055 [arXiv:0803.2526] [SPIRES]. · doi:10.1088/1126-6708/2008/06/055
[23] R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP04 (2008) 100 [arXiv:0712.2451] [SPIRES]. · Zbl 1246.81352 · doi:10.1088/1126-6708/2008/04/100
[24] S. Bhattacharyya et al., Forced fluid dynamics from gravity, JHEP02 (2009) 018 [arXiv:0806.0006] [SPIRES]. · Zbl 1245.83019 · doi:10.1088/1126-6708/2009/02/018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.