×

Weak-foci of high order and cyclicity. (English) Zbl 1396.34018

The authors consider planar polynomial systems in complex form with a weak focus at the origin and study the number of (small) limit cycles bifurcating from the origin under polynomial perturbations.
For this purpose they determine the order of the weak forms which is related to the first non-vanishing Lyapunov number and estimate the cyclicity of the origin (maximum number of bifurcating limit cycles) in dependence of the degree of polynomial perturbations.

MSC:

34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations

Software:

PARI/GP

References:

[1] Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maĭer, A.G.: Theory of Bifurcations of Dynamic Systems on a Plane. Halsted Press [A division of John Wiley & Sons], New York. (Israel Program for Scientific Translations, Jerusalem-London, 1973. Translated from the Russian) · JFM 23.0319.01
[2] Bai, J., Liu, Y.: A class of planar degree n (even number) polynomial systems with a fine focus of order \[n^2-n\] n2-n. Chin. Sci. Bull. 12, 1063-1065 (1992)
[3] Bautin, N.: On the number of limit cycles appearing with variation of the coefficients from an equilibrium state of the type of a focus or a center. Mat. Sb. 30, 181-196 (1952) · Zbl 0046.09403
[4] Bautin, N.: On the number of limit cycles appearing with variation of the coefficients from an equilibrium state of the type of a focus or a center. Am. Math. Soc. Transl. 100, 397-413 (1954)
[5] Bondar, Y., Sadovskii, A.: On a Zoladek theorem. Differ. Equ. 44, 263-265 (2008) · Zbl 1186.34042
[6] Christopher, C.: Estimating limit cycle bifurcations from centers. Differ. Equ. Symb. Comput. Trends Math. 30, 23-35 (2006) · Zbl 1108.34025
[7] Christopher, C., Lloyd, N.: Polynomial systems: a lower bound for the Hilbert numbers. Proc. R. Soc. Lond. Ser. A 450, 219-224 (1995) · Zbl 0839.34033 · doi:10.1098/rspa.1995.0081
[8] Gasull, A., Giné, J.: Cyclicity versus center problem. Qual. Theory Dyn. Syst. 9, 101-111 (2010) · Zbl 1210.34049 · doi:10.1007/s12346-010-0022-9
[9] Gasull, A., Giné, J., Torregrosa, J.: Center problem for systems with two monomial nonlinearities. Commun. Pure Appl. Math. 15(2), 577-598 (2016) · Zbl 1388.34024
[10] Gasull, A., Torregrosa, J.: A new approach to the computation of the Lyapunov constants. Comput. Appl. Math. 20, 149-177 (2001) · Zbl 1127.34318
[11] Giné, J.: Higher order limit cycle bifurcations from non-degenerate centers. Appl. Math. Comput. 218, 8853-8860 (2012) · Zbl 1255.34041
[12] Han, M., Li, J.: Lower bounds for the Hilbert number of polynomial systems. J. Differ. Equ. 252, 3278-3304 (2012) · Zbl 1247.34047 · doi:10.1016/j.jde.2011.11.024
[13] Ilyashenko, Yu.S.: Centennial history of Hilbert’s 16th problem. Bull. Am. Math. Soc. (N.S.) 39, 301-354 (2002) · Zbl 1004.34017
[14] Johnson, T.: A quartic system with twenty-six limit cycles. Exp. Math. 20, 323-328 (2011) · Zbl 1267.34059 · doi:10.1080/10586458.2011.565252
[15] Li, J.: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos 13, 47-106 (2003) · Zbl 1063.34026 · doi:10.1142/S0218127403006352
[16] Liang, H., Torregrosa, J.: Parallelization of the Lyapunov constants and cyclicity for centers of planar polynomial vector fields. J. Differ. Equ. 259, 6494-6509 (2015) · Zbl 1334.34070 · doi:10.1016/j.jde.2015.07.027
[17] Llibre, J., Rabanal, R.: Planar real polynomial differential systems of degree \[n>3\] n>3 having a weak-focus of high order. Rocky Mt. J. Math. 42, 657-693 (2012) · Zbl 1254.34048 · doi:10.1216/RMJ-2012-42-2-657
[18] Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor & Francis, Ltd., London (1992). [Translated from Edouard Davaux’s French translation (1907) of the 1892 Russian original and edited by A. T. Fuller. Reprint of Int. J. Control 55(3) (1992)] · JFM 28.0292.01
[19] Poincaré, H.: Sur l’intégration des équations différentielles du premier ordre et du premier degré I. Rend. Circ. Mat. Palermo 5, 161-191 (1891) · JFM 23.0319.01 · doi:10.1007/BF03015693
[20] Poincaré, H.: Sur l’intégration des équations différentielles du premier ordre et du premier degré II. Rend. Circ. Mat. Palermo 11, 193-239 (1897) · JFM 28.0292.01 · doi:10.1007/BF03015916
[21] Qiu, Y., Yang, J.: On the focus order of planar polynomial differential equations. J. Differ. Equ. 246, 3361-3379 (2009) · Zbl 1170.34019 · doi:10.1016/j.jde.2009.02.005
[22] Roussarie, R.: Bifurcation of planar vector fields and Hilbert’s sixteenth problem. In: Progr. Math., vol. 164. Birkhauser-Verlag, Basel (1998) · Zbl 0898.58039
[23] Shi, S.: A method of constructing cycles without contact around a weak-focus. J. Differ. Equ. 52, 301-312 (1981) · Zbl 0442.34029
[24] Shi, S.: On the structure of Poincaré-Lyapunov constants for the weak-focus of polynomial vector fields. J. Differ. Equ. 52, 52-57 (1984) · Zbl 0534.34059 · doi:10.1016/0022-0396(84)90133-5
[25] Sibirskii, K.: On the number of limit cycles arising from a singular point of focus or center type. Dokl. Akad. Nauk SSSR 161, 304-307 (1965) (Russian). [Sov. Math. Dokl.6, 428-431 (1965)] · Zbl 0132.32001
[26] The PARI Group: PARI/GP version 2.7.5, Bordeaux (2015). http://pari.math.u-bordeaux.fr/. Accessed 18 Feb 2016 · Zbl 1388.34024
[27] Wang, D., Mao, R.: A complex algorithm for computing Lyapunov values. Random Comput. Dyn. 2, 261-277 (1994) · Zbl 0829.34023
[28] Wang, S., Yu, P.: Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation. Chaos Solitons Fractals 26, 1317-1335 (2005) · Zbl 1098.37057 · doi:10.1016/j.chaos.2005.03.010
[29] Zoladek, H.: Eleven small limit cycles in a cubic vector field. Nonlinearity 8, 843-860 (1995) · Zbl 0837.34042 · doi:10.1088/0951-7715/8/5/011
[30] Zoladek, H.: The CD45 case revisited (2015). (Preprint) · Zbl 1365.34089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.