×

Cyclicity versus center problem. (English) Zbl 1210.34049

The authors consider a one-parameter family of differential systems of the form \[ \begin{aligned} \dot x &=-y+ a^k x(x^2+ y^2)+ aP(x,y,a),\\ \dot y &=x+ a^ky(x^2+ y^2)+ aQ(x,y,a),\end{aligned} \] where \(P\) and \(Q\) are analytic functions, starting at least with terms of degree 4 in \(x\) and \(y\), and \(k\geq 1\) is an integer number.
It is proved that the cyclicity of the origin is at most \(k- 1\) and there are analytic functions, \(P\) and \(Q\), for which this upper bound is sharp.

MSC:

34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
37C27 Periodic orbits of vector fields and flows
Full Text: DOI

References:

[1] Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G.: Theory of Bifurcations of Dynamic Systems on a Plane. Wiley, New York (1967)
[2] Bautin N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Mat. Sb. 30(72), 181–196 (1952) · Zbl 0059.08201
[3] Bautin N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Am. Math. Soc. Transl. 100, 397–413 (1954)
[4] Caubergh M.: Configurations of zeroes of analytic functions. C. R. Acad. Sci. Paris Sér. I Math. 333, 307–312 (2001) · Zbl 1037.34028
[5] Caubergh, M.: Limit cycles near vector fields of center type, PhD thesis. Limburgs Universitair Centrum, Belgium (2004)
[6] Caubergh M., Dumortier F.: Hopf-Takens bifurcations and centres. J. Differ. Equ. 202, 1–31 (2004) · Zbl 1059.34026 · doi:10.1016/j.jde.2004.03.018
[7] Caubergh M., Dumortier F.: Algebraic curves of maximal cyclicity. Math. Proc. Camb. Philos. Soc. 140, 47–70 (2006) · Zbl 1330.34049 · doi:10.1017/S0305004105008807
[8] Caubergh M., Gasull A.: Absolute cyclicity, Lyapunov quantities and center conditions. J. Math. Anal. Appl. 366, 297–309 (2010) · Zbl 1190.34035 · doi:10.1016/j.jmaa.2010.01.010
[9] Chavarriga J., Giacomini H., Giné J., Llibre J.: On the integrability of two-dimensional flows. J. Differ. Equ. 157, 163–182 (1999) · Zbl 0940.37005 · doi:10.1006/jdeq.1998.3621
[10] Dulac H.: Détermination et intégration d’une certain classe d’équations différentielle ayant pour point singulier un center. Bull. Sci. Math. Sér. (2) 32, 230–252 (1908) · JFM 39.0374.01
[11] Françoise J.P.: Successive derivatives of a first return map, application to the study of quadratic vector fields. Ergodic Theory Dyn. Syst. 16, 87–96 (1996) · Zbl 0852.34008
[12] Frommer M.: Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmheitsstellen. Math. Ann. 109, 395–424 (1934) · JFM 60.1094.01 · doi:10.1007/BF01449147
[13] Gasull A., Torregrosa J.: A new approach to the computation of the Lyapunov constants. The geometry of differential equations and dynamical systems. Comput. Appl. Math. 20, 149–177 (2001) · Zbl 1127.34318
[14] Gasull A., Torregrosa J.: A relation between small amplitude and big limit cycles. Rocky Mt. J. Math. 31, 1277–1303 (2001) · Zbl 1041.34016 · doi:10.1216/rmjm/1021249441
[15] Giné J., Santallusia X.: On the Poincaré–Lyapunov constants and the Poincaré series. Appl. Math. (Warsaw) 28, 17–30 (2001) · Zbl 1022.34028 · doi:10.4064/am28-1-2
[16] Iliev I.D., Perko L.M.: Higher order bifurcations of limit cycles. J. Differ. Equ. 154, 339–363 (1999) · Zbl 0926.34033 · doi:10.1006/jdeq.1998.3549
[17] Ilyashenko Yu.: Centennial history of Hilbert’s 16th problem. Bull. Am. Math. Soc. (N.S.) 39, 301–354 (2002) · Zbl 1004.34017 · doi:10.1090/S0273-0979-02-00946-1
[18] Li J.: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13, 47–106 (2003) · Zbl 1063.34026 · doi:10.1142/S0218127403006352
[19] Pearson J.M., Lloyd N.G., Christopher C.J.: Algorithmic derivation of centre conditions. SIAM Rev. 38, 619–636 (1996) · Zbl 0876.34033 · doi:10.1137/S0036144595283575
[20] Roussarie, R.: Bifurcation of planar vector fields and Hilbert’s sixteenth problem. Progress in Mathematics, vol. 164. Birkhäuser, Basel (1998) · Zbl 0898.58039
[21] Roussarie R.: Melnikov functions and Bautin ideal. Qual. Theory Dyn. Syst. 2, 67–78 (2001) · Zbl 1081.37030 · doi:10.1007/BF02969382
[22] \.Zoładek H.: Quadratic systems with center and their perturbations. J. Differ. Equ. 109, 223–273 (1994) · Zbl 0797.34044 · doi:10.1006/jdeq.1994.1049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.